Environmental modulation of metabolic function in microbial communities
微生物群落代谢功能的环境调节
基本信息
- 批准号:10720118
- 负责人:
- 金额:$ 33.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAutomobile DrivingBacteriaBasic ScienceBiological ModelsBiomassBlood PressureCarbonCarbon DioxideCell RespirationCellsChemicalsChromosome MappingClimateCommunitiesComplexCustomDevicesDietEnvironmentEnvironmental ImpactEquilibriumEutrophicationExhibitsFrequenciesGenesGenetic TranscriptionGenomeGenomicsGenotypeGlobal WarmingGoalsGrowthHealthHematopoietic NeoplasmsHumanHuman bodyHumanitiesIndividualKnowledgeLearningMachine LearningMapsMeasurementMediatingMetabolicMetabolic ControlMetabolic PathwayMetabolismMethodsMicrobial PhysiologyModelingMolecularNitratesNitric OxideNitritesNutrientOralOrganismOutcomeOxidantsOxygenOzonePathway interactionsPatternPhenotypePhysiologicalPhysiologyPlayPolysaccharidesPredispositionProcessProductionPropertyReactionRegulator GenesResource SharingResourcesRespirationRoleRouteScheduleSourceStructureSystemTestingToxic effectVariantWorkbacterial communitybehavior predictionclimate changedenitrificationdesigngenome-widehost-associated microbial communitiesimprovedinsightlearning communitylensmicrobialmicrobial communitymicrobiome compositionmicrobiome researchmicrobiotapH gradientpollutantprogramssuccesstrait
项目摘要
Microbial communities are complex systems whose emergent metabolic properties play a key role in
determining human health. Metabolic processes enabled by host-associated microbiota play a defining role in
individual health outcomes, and the emergent metabolism of microbial consortia affect environmental
processes from eutrophication to climate change, impacting human health on a global scale. Therefore,
humanity would benefit from a quantitative understanding of the rules by which the genomic composition of a
microbial community, and the environment in which it resides, determines its emergent metabolism.
Discovering the principles by which environmental variation alters community structure and determines
metabolic function is a necessity if we are to manipulate or design communities to improve health outcomes.
However, this task is challenging for existing methods.
In preliminary work, we establish a new quantitative framework for predicting the emergent metabolism
of a bacterial community from its genomic composition using denitrification as a model metabolic process.
Combining quantitative bacterial phenotyping, modeling, and a simple statistical approach we demonstrated a
method that quantitatively maps gene content to metabolite dynamics in microbial communities. This insight
provides a route to quantitatively connecting the genes present in a community to metabolite dynamics. The
next challenge is to use this insight to understand how community function and structure depend on the
environment.
We propose to extend this success by understanding how environmental gradients, complexity, and
dynamics impact community structure and function. We accomplish this by developing denitrification as a
model metabolic process. The outcomes of the proposed work will be three-fold. First, microbiome studies
have documented ubiquitous associations between environmental conditions and community composition, but
we do not understand the ecological or physiological origins of these emergent patterns or their metabolic
consequences. Using denitrifying communities across a pH gradient I will show that such patterns emerge from
ecological interactions. I will show that these interactions arise generically from the presence of physiological
trade-offs on microbial traits, providing a generalizable route to understanding the functional impact of
environmental variation on communities. Second, our preliminary study connected genomes to community
metabolism for a simple metabolic pathway acting. I will extend this success to complex pathways and
environmental conditions by constructing a method for predicting carbon utilization by communities in complex
nutrient conditions directly from genomes. I will utilize a powerful blend of genome-scale metabolic modeling
and multi-view machine learning, with impacts from host physiology to climate change. Third, I will use
denitrifying communities to test the idea that, like cells and organisms, microbial communities exhibit predictive
behaviors in dynamic environments. I propose that communities assembled in environments with distinct
schedules of aerobic respiration and anaerobic respiration (denitrification) adapt to facilitate the prompt
utilization of electron acceptors. I will test the hypothesis that community-level learning emerges from
ecological interactions and distinct gene regulatory programs, providing a new conceptual lens through which
we can view community adaptation to dynamic environments.
微生物群落是复杂的系统,其新兴的代谢特性在
决定人类的健康。宿主相关微生物群启用的代谢过程在以下方面发挥着决定性作用:
个人健康结果和微生物群落的新兴代谢影响环境
从富营养化到气候变化的过程,在全球范围内影响人类健康。所以,
人类将从对基因组组成规则的定量理解中受益。
微生物群落及其所处的环境决定了其新兴代谢。
发现环境变化改变群落结构并决定的原理
如果我们要操纵或设计社区来改善健康结果,代谢功能是必需的。
然而,这项任务对于现有方法来说具有挑战性。
在前期工作中,我们建立了一个新的定量框架来预测新兴代谢
使用反硝化作用作为模型代谢过程,从其基因组组成中分析细菌群落。
结合定量细菌表型、建模和简单的统计方法,我们证明了
将基因内容定量映射到微生物群落代谢动态的方法。这种洞察力
提供了一种定量地将群落中存在的基因与代谢动态联系起来的途径。这
下一个挑战是利用这种洞察力来理解社区功能和结构如何依赖于
环境。
我们建议通过了解环境梯度、复杂性和
动态影响群落结构和功能。我们通过发展反硝化技术来实现这一目标
模型代谢过程。拟议工作的成果将是三重的。一、微生物组研究
已经记录了环境条件和群落组成之间普遍存在的关联,但是
我们不了解这些新兴模式的生态或生理起源或其代谢
结果。在 pH 梯度上使用反硝化群落,我将证明这种模式是从
生态相互作用。我将证明这些相互作用通常是由于生理因素的存在而产生的
微生物特性的权衡,提供了一条通用的途径来理解微生物的功能影响
社区的环境变化。其次,我们的初步研究将基因组与社区联系起来
新陈代谢为简单的代谢途径起作用。我将把这一成功扩展到复杂的途径
通过构建一种预测复杂环境中社区碳利用的方法来预测环境条件
直接来自基因组的营养条件。我将利用基因组规模代谢模型的强大组合
以及多视图机器学习,以及从宿主生理学到气候变化的影响。第三,我会用
反硝化群落来测试这样的想法:像细胞和有机体一样,微生物群落表现出预测性
动态环境中的行为。我建议社区聚集在具有独特特征的环境中
有氧呼吸和无氧呼吸(反硝化)的时间表适应以利于及时
电子受体的利用。我将检验社区级学习源自的假设
生态相互作用和独特的基因调控程序,提供了一个新的概念镜头
我们可以看到社区对动态环境的适应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seppe Kuehn其他文献
Seppe Kuehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Targeting P21 positive senescent cells for alleviating TMJ degeneration
靶向 P21 阳性衰老细胞减轻 TMJ 变性
- 批准号:
10892710 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别:
Determining pathogenic PrPC-induced signaling pathways in human iPSC-induced neurons
确定人 iPSC 诱导神经元中致病性 PrPC 诱导的信号通路
- 批准号:
10791127 - 财政年份:2023
- 资助金额:
$ 33.71万 - 项目类别: