Defining the neurocircuit activated by the VMH to control energy expenditure.
定义由 VMH 激活的神经回路来控制能量消耗。
基本信息
- 批准号:10717770
- 负责人:
- 金额:$ 35.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-17 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAdipose tissueAffectAgonistAnatomyAnteriorAreaBody WeightBody Weight decreasedBrainBrain StemBrain regionCell CommunicationCellsCommunicationCost of IllnessCountryDataDevelopmentDiabetes MellitusDietEatingElectrophysiology (science)Energy MetabolismFastingFatty acid glycerol estersFiberGCG geneGenesGeneticGoalsHomeostasisHypoglycemiaHypothalamic structureIndividualInjectionsLeptinMedialMediatingMetabolicMetabolic DiseasesMidbrain structureMorbidity - disease rateMusMuscleNeuronsNeuropeptide ReceptorNeuropeptidesNormal RangeNutrientObesityObesity associated diseaseOrganOutcomeOutputPaperPatientsPeripheralPersonsPreoptic AreasProcessPublishingResearchRoleSignal TransductionSiteStructure of paraventricular nucleus of thalamusStructure of terminal stria nuclei of preoptic regionSystemTestingThermogenesisTissuesUnited StatesWeight maintenance regimenbariatric surgerycellular targetingcostcounterregulationdietaryenergy balanceexhaustexperimental studygamma-Aminobutyric Acidinhibitory neuronloss of functionmortalitymouse modelneural circuitneuromechanismnew therapeutic targetnovelnovel therapeuticsobesity treatmentpituitary adenylate cyclase activating polypeptidereceptorrecombinaseresponseside effectweight loss intervention
项目摘要
PROJECT ABSTRACT
While body weight is tightly regulated in healthy individuals, obesity results from failed homeostatic
mechanisms that protect individuals from metabolic disease. Obesity already plagues approximately 100 million
people and costs approximately $200 billion dollars annually in this country. Thus, it is imperative that we find
better ways to treat obesity before this problem gets out of control. The brain contains unexplored potential
avenues for obesity treatment. While it has been clear that neural mechanisms can dramatically shift energy
homeostasis, these mechanisms have been poorly described to this point. Specialized neurons detect changes
in energy status. Because the brain exhausts almost a quarter of all nutrients in the body, it is especially
important for the brain to keep energy levels in a normal range. Therefore, there are undiscovered, or not
completely discovered, built-in systems into the brain that maintain energy homeostasis.
Recent studies have aimed to understand the function of distinct sets of cells in the brain involved in
individual aspects of metabolic function. This has recently been revealed to be the case for a key area of the
brain called the ventromedial hypothalamus. We have published papers that identify a set of cells within this
brain area is essential for hypoglycemic counterregulation, a critical factor for diabetes treatment. These cells
are intermingled in the same area with others that are essential for energy balance by stimulating energy
expenditure. Removing the neuropeptide pituitary adenylate cyclase activating polypeptide centered on the
ventromedial hypothalamus induces obesity. Because there are no direct connections from the ventromedial
hypothalamus with peripheral organ targets, these functions must be controlled through a downstream site to
that responds to pituitary adenylate cyclase activating polypeptide.
In this proposal, we aim to identify both the anatomical and the cellular targets in the regions that
ventromedial hypothalamus neurons project. Our preliminary data indicate that ventromedial hypothalamus
neurons only project to a few sites. These projections particularly overlay with the caudal divisions of the preoptic
area, a region critical to energy expenditure control. We will employ genetic mouse models in conjunction with
AAV-driven gain or loss of function experiments to test the hypothesis that dietary signals that communicate fuel
adequacy to engage the neuropeptide in the ventromedial hypothalamus and action within the preoptic area on
neurons that are inhibitory and contain the receptor for the neuropeptide. We will define the dietary signals that
require the ventromedial hypothalamus neuropeptide and downstream communication by these cells. We will
then determine the downstream regions that requires activation by the neuropeptide receptor and communication
by these cells. Then, we will identify the inhibitory cells within the preoptic area that contain the neuropeptide
receptor and the peripheral actions they engage to support energy balance through energy expenditure.
项目摘要
虽然健康个体的体重受到严格调节,但肥胖是由于体内平衡失败造成的
保护个体免受代谢疾病的机制。肥胖已经困扰着大约一亿人
这个国家每年的人力和成本约为 2000 亿美元。因此,我们迫切需要找到
在这个问题失控之前,找到更好的方法来治疗肥胖。大脑蕴藏着未开发的潜力
肥胖症治疗的途径。虽然很明显神经机制可以显着转移能量
稳态,到目前为止,这些机制的描述还很少。专门的神经元检测变化
处于能量状态。由于大脑几乎耗尽了身体所有营养物质的四分之一,因此尤其如此
对于大脑将能量水平保持在正常范围内很重要。所以,还有未被发现的,或者说没有
完全被发现的、大脑中维持能量稳态的内置系统。
最近的研究旨在了解大脑中参与的不同细胞组的功能
代谢功能的各个方面。最近有消息称,该项目的一个关键领域就是这种情况。
大脑称为下丘脑腹内侧。我们发表的论文鉴定了其中的一组细胞
大脑区域对于低血糖反调节至关重要,而低血糖反调节是糖尿病治疗的关键因素。这些细胞
与其他区域混合在一起,通过刺激能量来实现能量平衡
支出。去除以神经肽为中心的垂体腺苷酸环化酶激活多肽
下丘脑腹内侧区诱发肥胖。因为腹内侧没有直接连接
下丘脑具有周围器官目标,这些功能必须通过下游位点控制
响应垂体腺苷酸环化酶激活多肽。
在本提案中,我们的目标是确定以下区域的解剖和细胞目标:
下丘脑腹内侧神经元投射。我们的初步数据表明,下丘脑腹内侧
神经元仅投射到少数部位。这些投影特别与视前区的尾部部分重叠
区域,对能源支出控制至关重要的区域。我们将结合使用遗传小鼠模型
AAV 驱动的功能获得或丧失实验来检验饮食信号传递能量的假设
足以使神经肽参与下丘脑腹内侧并在视前区发挥作用
具有抑制性并含有神经肽受体的神经元。我们将定义饮食信号
需要腹内侧下丘脑神经肽和这些细胞的下游通讯。我们将
然后确定需要神经肽受体激活和通讯的下游区域
由这些细胞。然后,我们将识别视前区内含有神经肽的抑制细胞
受体及其外围活动通过能量消耗支持能量平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Nicholas Flak其他文献
Jonathan Nicholas Flak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Nicholas Flak', 18)}}的其他基金
Deciphering the neurocircuits that initiate counterregulation
破译启动反调节的神经回路
- 批准号:
9085534 - 财政年份:2016
- 资助金额:
$ 35.31万 - 项目类别:
Brainstem LepRb neurons in the control of metabolism
脑干 LepRb 神经元控制代谢
- 批准号:
8521715 - 财政年份:2013
- 资助金额:
$ 35.31万 - 项目类别:
相似国自然基金
FTL+ALB+脂肪干细胞与CD36+EBF2-内皮细胞通过交互作用影响脂肪组织衰老的机制研究
- 批准号:82370884
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂肪组织中SIRT3通过抑制外泌体miR-30a-3p调控肝脏自噬影响非酒精性脂肪肝病的机制研究
- 批准号:32360174
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
ANGPTLs基因及其蛋白表达水平调控内脏脂肪组织影响健康衰老表型的前瞻性队列研究
- 批准号:82373661
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肥胖脂肪组织小囊泡转运鞘磷脂调控鞘磷脂水解代谢促进破骨分化影响骨质疏松的机制研究
- 批准号:32300985
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HNRNPA1通过转录调控KRAS影响脂肪组织葡萄糖稳态的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functions of the rete ovarii in ovary development, adult homeostasis, and female reproductive longevity
卵巢网在卵巢发育、成人体内平衡和女性生殖寿命中的功能
- 批准号:
10828038 - 财政年份:2023
- 资助金额:
$ 35.31万 - 项目类别:
Mechanistic Connection between Interorganellar Communication and Obesity-associated Diseases
细胞器间通讯与肥胖相关疾病之间的机制联系
- 批准号:
10634347 - 财政年份:2023
- 资助金额:
$ 35.31万 - 项目类别:
Pathophysiological Significance of Atrial Fibrillation Electrogram Patterns
心房颤动电图模式的病理生理学意义
- 批准号:
10634983 - 财政年份:2023
- 资助金额:
$ 35.31万 - 项目类别:
The importance of Treg-intrinsic cholesterol metabolism for visceral adipose tissue Treg homeostasis, phenotype, and function
Treg 固有胆固醇代谢对内脏脂肪组织 Treg 稳态、表型和功能的重要性
- 批准号:
10752289 - 财政年份:2023
- 资助金额:
$ 35.31万 - 项目类别: