Developing a refined comorbidity index for use in obstetric patients
开发用于产科患者的精细合并症指数
基本信息
- 批准号:10719480
- 负责人:
- 金额:$ 57.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmission activityAffectAlgorithmsAmerican College of Obstetricians and GynecologistsAreaArea Under CurveBirthCalibrationCaringCenters for Disease Control and Prevention (U.S.)CertificationCharacteristicsClinicalCommunitiesCountryDataData AnalysesData SourcesDiagnosisDiscipline of obstetricsDiscriminationEffectivenessElectronic Health RecordEvaluationEventGoalsGuidelinesHealth Care CostsHealth systemHospitalsIndividualInpatientsIntensive Care UnitsInternational Classification of Disease CodesInvestmentsMachine LearningMarylandMaternal HealthMaternal Health ServicesMaternal MortalityMaternal-fetal medicineMeasuresMedicalMonitorOutcomeOutcome MeasurePatientsPeer ReviewPerformancePerinatal CarePregnancyProcessProfessional OrganizationsPrognosisProgram EvaluationPropertyPsychometricsPublishingReceiver Operating CharacteristicsRecommendationReportingResearchResourcesReview LiteratureRiskRisk AdjustmentSamplingSocietiesStructureSystemTechniquesTestingTimeTransfusionTriageUnited StatesWorkblood productclinical practicecomorbiditycomorbidity Indexdata standardshealth care deliveryhealth datahigh riskimprovedindexinginnovationmeetingspatient populationpatient safetypredictive modelingsevere maternal morbiditysociodemographic grouptrendvirtual
项目摘要
Project Summary
Addressing the rising trends in maternal mortality and severe maternal morbidity (SMM) is a critical priority in
the United States. About half of adverse maternal health outcomes were found to be attributable to preventable
harm or unintended consequences arising from clinical practice and the system of delivering perinatal care.
Significant resources are currently being invested to implement quality improvement (QI) initiatives in birthing
hospitals across the country. There is great need to evaluate these efforts and demonstrate their effectiveness
to reducing the burden of preventable SMM and maternal deaths. Virtually all QI initiatives in birthing hospitals
use SMM as an outcome measure, but their evaluation is hindered by the need to risk-adjust SMM rates to
control for differences in patient composition within and between hospitals. To date, 3 different research groups
proposed obstetric comorbidity indices, yet all have significant limitations. The overarching goal of this study is
to develop and validate a refined comorbidity index for obstetric patients that allows SMM rate comparisons
across hospitals and adequate monitoring of QI initiatives in obstetrics. We will use Maryland’s unique, gold-
standard, hospital-based, state-representative SMM Surveillance and Review data to identify a comprehensive
list of comorbidities in patients with SMM events. Using electronic health record data from the Johns Hopkins
Health System, we will employ variable importance estimation with machine learning techniques to develop the
comorbidity index. Subsequently, we will ascertain its accuracy using receiver operating characteristic
(ROC)/precision-recall (PR) curves and areas under the curve (AUC) for outcome discrimination and lowess-
smoothed calibration plots. Also, we will compare the performance of the refined comorbidity index to predict
SMM against that of previously published comorbidity indices. To further validate our refined comorbidity index
and assesses its performance consistency across various sociodemographic groups, we will use national
hospital discharge data from the Healthcare Cost and Utilization Project’s National Inpatient Sample. A
Technical Advisory Group comprised of clinicians, community partners, patient safety experts, and certified
medical coders will meet quarterly for data interpretation sessions. At the end of the study, we expect to have a
refined comorbidity index developed in gold-standard data, with superior psychometric properties than the
previously published comorbidity indices and validated in both EHR and national hospital discharge data. Our
results will be disseminated in the peer-reviewed literature and through presentations at scientific meetings.
项目概要
解决孕产妇死亡率和严重孕产妇发病率(SMM)不断上升的趋势是一项至关重要的优先事项
美国大约一半的不良孕产妇健康结果可归因于可预防的问题。
临床实践和提供围产期护理的系统引起的伤害或意外后果。
目前正在投入大量资源来实施分娩质量改进(QI)举措
全国各地的医院非常需要评估这些努力并证明其有效性。
减轻产科医院几乎所有 QI 举措中可预防的 SMM 和孕产妇死亡的负担。
使用 SMM 作为结果衡量标准,但其评估因需要对 SMM 利率进行风险调整而受到阻碍
迄今为止,有 3 个不同的研究小组控制了医院内部和医院之间患者构成的差异。
提出的产科合并症指数,但都有很大的局限性。这项研究的总体目标是。
开发并验证产科患者的精细合并症指数,以便进行 SMM 率比较
我们将利用马里兰州独特的黄金质量监控措施。
标准的、基于医院的、具有州代表性的 SMM 监测和审查数据,以确定全面的
使用约翰霍普金斯大学的电子健康记录数据列出 SMM 事件患者的合并症列表。
卫生系统,我们将采用机器学习技术的变量重要性估计来开发
随后,我们将使用接收者操作特征来确定其准确性。
(ROC)/精确召回(PR)曲线和曲线下面积(AUC)用于结果区分和低值-
此外,我们还将比较精炼的合并症指数的性能以进行预测。
SMM 与之前发布的合并症指数进行比较,以进一步验证我们改进的合并症指数。
并评估其在不同社会人口群体中的表现一致性,我们将使用国家
来自医疗保健成本和利用项目的全国住院患者样本 A 的出院数据。
技术咨询小组由超级明星、社区合作伙伴、患者安全专家和经过认证的专家组成
医疗编码员将每季度召开一次数据解释会议。在研究结束时,我们预计将举行一次会议。
根据金标准数据开发的精细合并症指数,具有比标准数据更优越的心理测量特性
之前发布的合并症指数并在 EHR 和国家医院出院数据中得到验证。
结果将通过同行评审文献和科学会议上的演讲进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreea Alina Creanga其他文献
Andreea Alina Creanga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreea Alina Creanga', 18)}}的其他基金
Maternal Health Data Innovation and Coordination Hub
孕产妇健康数据创新与协调中心
- 批准号:
10748737 - 财政年份:2023
- 资助金额:
$ 57.04万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10368078 - 财政年份:2021
- 资助金额:
$ 57.04万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10195079 - 财政年份:2021
- 资助金额:
$ 57.04万 - 项目类别:
Use of a machine learning framework to predict severe maternal morbidity
使用机器学习框架来预测严重的孕产妇发病率
- 批准号:
9767258 - 财政年份:2018
- 资助金额:
$ 57.04万 - 项目类别:
相似海外基金
Vision Impairment in the National Health and Aging Trends Study: Epidemiology, Social Determinants of Health, and Adverse Late Life Outcomes
国家健康和老龄化趋势研究中的视力障碍:流行病学、健康的社会决定因素和不良的晚年结局
- 批准号:
10730418 - 财政年份:2023
- 资助金额:
$ 57.04万 - 项目类别:
Development of wireless, wearable flow sensors for continuous, long-term tracking of cerebrospinal fluid dynamics in patients with hydrocephalus
开发无线可穿戴流量传感器,用于连续、长期跟踪脑积水患者的脑脊液动力学
- 批准号:
10728656 - 财政年份:2023
- 资助金额:
$ 57.04万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 57.04万 - 项目类别:
Racial Differences in Hospital-Associated Disability and Acute and Post-Acute Care Physical Therapy Utilization
医院相关残疾以及急性和急性后护理物理治疗利用的种族差异
- 批准号:
10785500 - 财政年份:2023
- 资助金额:
$ 57.04万 - 项目类别: