Combinatorial Imaging of the Oral Microbiome

口腔微生物组的组合成像

基本信息

  • 批准号:
    7830369
  • 负责人:
  • 金额:
    $ 47.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-22 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The human mouth is colonized by a microbial community of enormous complexity that plays a key role in human health and disease. Dental plaque is a biofilm constructed and inhabited by microbes, and the oral microbial community is involved in the development of several infectious diseases such as dental caries, periodontal disease, alveolar osteitis, tonsillitis, strep throat and otitis media. The question of which organisms are present in the oral cavity has been extensively studied and over 600 species or phylotypes have been identified, of which only about half can be cultivated at the present time. Recent surveys using 16S rRNA clones indicate that the relative abundance of taxa is uneven, with about 250 taxa accounting for 90% of the clones observed. The DNA microarray or tag sequencing methods currently used to identify which taxa are present require that a sample be homogenized to extract the DNA for further analysis. Although centimeterscale information can be retained (for example, which tooth the plaque was taken from, or whether a sample was from the side or the top of the tongue), spatial information at the micron level--namely the level of microbial community organization--is lost. The objective of this project is to develop a novel, "combinatorial imaging" method for simultaneous imaging and identification of many microbial taxa in samples from the human mouth, so as to obtain micronscale information about the spatial organization of the oral microbiome. The technique of fluorescence in situ hybridization (FISH) targeting ribosomal RNA is widely used to identify microbes and can be specific and sensitive, but as commonly employed it allows the differentiation of only two or three taxa simultaneously. We propose to extend the capabilities of FISH by at least an order of magnitude, employing a combination of fluorescent reporter groups to create "spectral signatures" that allow simultaneous encoding and imaging of tens to potentially hundreds of different microbial phylotypes. Over the course of the project, individual FISH probes, and sets of fifteen or more FISH probes labeled with different combinations of fluorophores, will be designed and tested on cultured cells, in vitro biofilms and on plaque obtained from volunteers. The focus of the project is translational technology development, expanding the set of probes that can be employed to detect oral microbial taxa, obtaining information about where taxa are located relative to each other and relative to host (human) tissues, and pushing the practical limits of this technique as applied to dental microbes in small clusters and in biofilms. The technology has the potential to be used for developing high throughput translational science assays for the rapid and cost-effective monitoring of oral communities. It will lay the foundation for future studies examining the role of the normal microbial flora in both healthy and diseased mouths. PUBLIC HEALTH RELEVANCE: Hundreds of species of bacteria live in the human mouth; dental plaque is a biofilm constructed and inhabited by microbes; and the oral microbial community is involved in the development of many oral diseases including dental caries and periodontitis. This proposal is to develop innovative, "combinatorial imaging" technology to study the precise spatial organization of different kinds of bacteria comprising microbial communities found in the mouth. The technology introduces "spectral signatures" using binary combinations of fluorescently labeled probes targeting intact bacteria and using spectral imaging to differentiate large numbers of labeled probes simultaneously. This method will allow us to determine where taxa are located relative to each other and relative to the host (human) tissues, which will lay the foundation for new, rapid diagnostic assays and for studies of how oral microbial communities work and how pathogenic species invade host tissues and cause disease.
描述(由申请人提供):人类口腔中栖息着极其复杂的微生物群落,这些微生物群落在人类健康和疾病中发挥着关键作用。牙菌斑是微生物构建和栖息的生物膜,口腔微生物群落参与多种传染病的发生,如龋齿、牙周病、牙槽骨炎、扁桃体炎、链球菌性咽喉炎和中耳炎。口腔中存在哪些生物体的问题已被广泛研究,并已鉴定出 600 多种物种或系统型,其中目前仅约一半可以培养。最近使用 16S rRNA 克隆的调查表明,类群的相对丰度不均匀,大约 250 个类群占观察到的克隆的 90%。目前用于识别存在哪些类群的 DNA 微阵列或标签测序方法需要对样品进行均质化以提取 DNA 进行进一步分析。尽管可以保留厘米级信息(例如,牙菌斑是从哪颗牙齿中取出的,或者样本是来自舌头的侧面还是顶部),但微米级的空间信息(即微生物群落组织的水平) -丢失了。该项目的目标是开发一种新颖的“组合成像”方法,用于同时成像和识别人类口腔样本中的许多微生物类群,从而获得有关口腔微生物组空间组织的微米级信息。针对核糖体 RNA 的荧光原位杂交 (FISH) 技术广泛用于鉴定微生物,并且具有特异性和敏感性,但作为常用技术,它只能同时区分两个或三个分类群。我们建议将 FISH 的功能扩展至少一个数量级,采用荧光报告基团的组合来创建“光谱特征”,允许同时编码和成像数十到可能数百种不同的微生物系统型。在该项目的过程中,将设计单独的 FISH 探针以及用不同荧光团组合标记的 15 个或更多 FISH 探针组,并在培养细胞、体外生物膜和从志愿者获得的斑块上进行测试。该项目的重点是转化技术开发,扩大可用于检测口腔微生物类群的探针组,获取有关类群相对于彼此以及相对于宿主(人类)组织的位置的信息,并突破实际极限该技术应用于小簇和生物膜中的牙科微生物。该技术有潜力用于开发高通量转化科学测定,以快速且经济有效地监测口腔群落。它将为未来研究正常微生物菌群在健康和患病口腔中的作用奠定基础。 公共卫生相关性:人类口腔中生活着数百种细菌;牙菌斑是由微生物构建和居住的生物膜;口腔微生物群落参与许多口腔疾病的发生,包括龋齿和牙周炎。该提案旨在开发创新的“组合成像”技术,以研究口腔中发现的微生物群落中不同种类细菌的精确空间组织。该技术引入了“光谱特征”,使用针对完整细菌的荧光标记探针的二元组合,并使用光谱成像同时区分大量标记探针。这种方法将使我们能够确定类群相对于彼此以及相对于宿主(人类)组织的位置,这将为新的快速诊断分析以及口腔微生物群落如何工作和致病物种如何入侵的研究奠定基础宿主组织并引起疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary G Borisy其他文献

Gary G Borisy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary G Borisy', 18)}}的其他基金

Metapangenomics of the Oral Microbiome
口腔微生物组的宏基因组学
  • 批准号:
    10651901
  • 财政年份:
    2021
  • 资助金额:
    $ 47.58万
  • 项目类别:
Metapangenomics of the Oral Microbiome
口腔微生物组的宏基因组学
  • 批准号:
    10296963
  • 财政年份:
    2021
  • 资助金额:
    $ 47.58万
  • 项目类别:
Metapangenomics of the Oral Microbiome
口腔微生物组的宏基因组学
  • 批准号:
    10441554
  • 财政年份:
    2021
  • 资助金额:
    $ 47.58万
  • 项目类别:
Spatial Organization of the Oral Microbiome
口腔微生物组的空间组织
  • 批准号:
    10398953
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
Spatial Organization of the Oral Microbiome
口腔微生物组的空间组织
  • 批准号:
    8766782
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
Spatial Organization of the Oral Microbiome
口腔微生物组的空间组织
  • 批准号:
    8439235
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
Spatial Organization of the Oral Microbiome
口腔微生物组的空间组织
  • 批准号:
    8790445
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
Spatial Organization of the Oral Microbiome
口腔微生物组的空间组织
  • 批准号:
    9187385
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
Spatial Organization of the Oral Microbiome
口腔微生物组的空间组织
  • 批准号:
    10163156
  • 财政年份:
    2012
  • 资助金额:
    $ 47.58万
  • 项目类别:
Regenerative Biology Center at the MBL
MBL 再生生物学中心
  • 批准号:
    7859421
  • 财政年份:
    2009
  • 资助金额:
    $ 47.58万
  • 项目类别:

相似国自然基金

地表与大气层顶短波辐射多分量一体化遥感反演算法研究
  • 批准号:
    42371342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
  • 批准号:
    72361020
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
  • 批准号:
    52372329
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效非完全信息对抗性团队博弈求解算法研究
  • 批准号:
    62376073
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

アナログ回路に基づく進化計算手法による深層学習モデルの最適化
基于模拟电路的进化计算方法优化深度学习模型
  • 批准号:
    24K15115
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 47.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了