Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
基本信息
- 批准号:10707029
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsArchitectureAsthmaBindingBiochemicalBiological AssayBiophysical ProcessBiophysicsBlood VesselsC-terminalCell ShapeCell-Matrix JunctionCellsCellular AssayCryoelectron MicroscopyCytoplasmCytoskeletonDetectionDevelopmentDiseaseElectron MicroscopyEnvironmentEpitheliumEquilibriumEventF-ActinFeedbackFibrosisFluorescence MicroscopyFunctional disorderGene Expression RegulationHeartHeart DiseasesHomeostasisHypertensionIn SituIn VitroIndividualLightLobular NeoplasiaLungMechanicsMediatingMethodsMicrofilamentsMolecularMolecular ConformationMorphogenesisMyosin ATPaseN-terminalPathway interactionsPhysical condensationPhysical environmentPhysiologicalPhysiological ProcessesPlayPolymersProcessPropertyProtein FamilyProteinsRegulationRoleRuptureSignal TransductionSiteStress FibersTertiary Protein StructureTestingTimeTissuesVisualizationWorkZYX genealpha Actininbiophysical propertiescrosslinkelectron tomographyextracellularfiber cellinsightmechanical forcemechanical signalmechanical stimulusmechanotransductionnovelpolymerizationprotein crosslinkreconstitutionrecruitrepairedstructural determinantstargeted treatmenttherapeutic developmenttherapy developmenttooltransmission processvasodilator-stimulated phosphoprotein
项目摘要
PROJECT SUMMARY
For tissues to maintain a physical steady-state equilibrium with its dynamic surroundings (“mechanical
homeostasis”), individual cells must be able to perceive mechanical cues in their local environment and respond
accordingly. Mechanical homeostasis plays an essential role in morphogenesis, and its dysregulation can lead
to disease states such as hypertension, fibrosis, and asthma. While there has been significant progress in
understanding the physiological significance of mechanical homeostasis and cellular mechanosensation, the
molecular mechanisms by which proteins convert mechanical stimuli into biochemical signals
(“mechanotransduction”) are poorly understood, impeding the development of targeted therapeutics for
dysregulated mechanotransduction and its disease states.
The actin cytoskeleton plays a prominent role in mechanotransduction, notably actin-myosin cables
known as stress fibers (SFs) which both actively generate contractile forces and transmit extracellular forces
impinging on cell-cell and cell-matrix adhesions into the cytoplasm. Dynamic regulation of SF assembly,
disassembly, and contractility are important for many physiological processes involving cellular mechanics and
dynamic cell shape changes, such as epithelial tissue homeostasis and morphogenesis. Stochastic mechanical
imbalance in SFs can result in mechanically-induced ruptures, termed stress fiber strain site (SFSS). While some
SFSS proceed towards catastrophic breakage, the majority are repaired by zyxin, a mechanosensitive LIM (LIN-
11, Isl-1, & Mec-3) protein. Zyxin first localizes to strain sites through its three C-terminal tandem LIM domains,
then recruits the cross-linking protein ɑ-actinin and polymerization factor VASP through its N-terminal domains
to mediate SF repair in a matter of minutes. While there is evidence for this sequence of events at the cellular
level, the biophysical mechanism of zyxin-mediated SF repair is not well understood. Furthermore, the
architectural features of a SFSS which are recognized by zyxin’s LIM domains are unknown.
Here I propose to determine the molecular and structural mechanism of zyxin-mediated SF repair.
Through biophysical reconstitution and cellular assays, I will test the hypothesis that zyxin, α-actinin, and VASP
directly co-assemble to repair mechanically damaged actin filaments and determine the biophysical mechanism
of zyxin-mediated mechanical homeostasis (Aim 1). I will then apply cutting-edge correlative cryo-light electron
microscopy to test the hypothesis that zyxin binds to a force-dependent actin conformation we have observed in
vitro (Aim 2). In addition to providing specific insights into mechanical homeostasis of SFs, these studies are
also likely to reveal general mechanisms of mechanotransduction through the cytoskeleton. In the longer term,
this work will guide the development of therapeutics against dysregulated mechanotransduction pathways.
项目概要
让组织与其动态环境保持物理稳态平衡(“机械
稳态”),单个细胞必须能够感知局部环境中的机械信号并做出反应
机械稳态在形态发生中起着至关重要的作用,其失调可能会导致相应的结果。
高血压、纤维化和哮喘等疾病的治疗已取得重大进展。
了解机械稳态和细胞机械感觉的生理意义,
蛋白质将机械刺激转化为生化信号的分子机制
(“机械转导”)知之甚少,阻碍了靶向治疗的发展
机械转导失调及其疾病状态。
肌动蛋白细胞骨架在力传导中发挥着重要作用,尤其是肌动蛋白-肌球蛋白电缆
被称为应力纤维(SF),它既能主动产生收缩力又能传递细胞外力
影响 SF 组装的细胞-细胞和细胞-基质粘附,
分解和收缩性对于涉及细胞力学和细胞力学的许多生理过程很重要
动态细胞形状变化,例如上皮组织稳态和形态发生。
SF 的不平衡会导致机械引起的断裂,称为应力纤维应变位点 (SFSS)。
SFSS 走向灾难性的断裂,大部分由 zyxin 修复,zyxin 是一种机械敏感的 LIM(LIN-
11、Isl-1 和 Mec-3) 蛋白首先通过其三个 C 端串联 LIM 结构域定位到菌株位点。
然后通过其 N 端结构域招募交联蛋白 ɑ-肌动蛋白和聚合因子 VASP
在几分钟内介导 SF 修复,尽管有证据表明细胞内发生了这一系列事件。
此外,zyxin 介导的 SF 修复的生物物理机制尚不清楚。
zyxin 的 LIM 域识别的 SFSS 的架构特征尚不清楚。
在这里,我建议确定 zyxin 介导的 SF 修复的分子和结构机制。
通过生物物理重建和细胞测定,我将检验 zyxin、α-肌动蛋白和 VASP 的假设
直接共组装修复机械损伤的肌动蛋白丝并确定生物物理机制
然后我将应用尖端相关的低温光电子。
显微镜来检验 zyxin 与我们观察到的力依赖性肌动蛋白构象结合的假设
除了提供对 SF 机械稳态的具体见解外(目标 2)。
从长远来看,也可能揭示通过细胞骨架的机械传导的一般机制。
这项工作将指导针对机械转导途径失调的治疗方法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donovan Yong Zhi Phua其他文献
Donovan Yong Zhi Phua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donovan Yong Zhi Phua', 18)}}的其他基金
Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
- 批准号:
10536382 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
- 批准号:
10536382 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondrial translocator protein: a target for bronchodilation
线粒体易位蛋白:支气管扩张的靶点
- 批准号:
10432105 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondrial translocator protein: a target for bronchodilation
线粒体易位蛋白:支气管扩张的靶点
- 批准号:
10298047 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondrial translocator protein: a target for bronchodilation
线粒体易位蛋白:支气管扩张的靶点
- 批准号:
10653090 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondrial translocator protein: a target for bronchodilation
线粒体易位蛋白:支气管扩张的靶点
- 批准号:
10298047 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别: