Regulation of Tumor Oxygenation by BACH1 in Breast Cancer
BACH1 在乳腺癌中对肿瘤氧合的调节
基本信息
- 批准号:10693966
- 负责人:
- 金额:$ 39.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Angiogenic FactorAntioxidantsBACH1 geneBlood flowBreast Cancer CellBreast Cancer PatientBreast cancer metastasisCancer EtiologyCancer PatientCatabolismCell HypoxiaCessation of lifeClinicalClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsComplexCytotoxic ChemotherapyDataDiseaseDrug Delivery SystemsERBB2 geneEndothelial CellsEpigenetic ProcessFDA approvedGene ExpressionGenesGenetic TranscriptionGoalsHemeHeminHormone ReceptorHypoxiaHypoxia Inducible FactorImmunotherapyLocalized Malignant NeoplasmMediatingMetabolicMusOxygenOxygen Therapy CarePatientsPharmaceutical PreparationsPhenotypePlayProductionPublishingRadiationRadiation therapyRefractoryRegulationResistanceRoleSchemeSignal TransductionSpecificityStressSurvival RateTestingTherapeuticTranscriptional RegulationTreatment EfficacyTumor OxygenationUbiquitinWomanWorkXenograft procedureaggressive breast cancerangiogenesisbiological adaptation to stresscancer cellcancer subtypeschemotherapycytotoxicgene repressionimprovedinhibitormalignant breast neoplasmmigrationmortalitymouse modelmulticatalytic endopeptidase complexmutantneoplastic cellnovelnovel therapeutic interventionoverexpressionoxidationprognosticprogramspublic health relevanceradiation resistanceresponsesmall hairpin RNAstandard of caretranscription factortreatment strategytriple-negative invasive breast carcinomatumortumor hypoxiatumor microenvironment
项目摘要
Triple negative breast cancer (TNBC), the most aggressive and metastatic subtype of breast cancer, is one
of the major causes of cancer death in women. TNBC also has lower survival rates for primarily local
cancers. Loss of hormone receptors and the lack of HER2 overexpression in TNBC limit treatments to
cytotoxic therapies such as radiation, a key clinical strategy for 10-15% of breast cancer patients. Hypoxia
is a major cause of resistance to radiotherapy, chemotherapy and even immunotherapy. Thus, identifying
mechanisms to suppress the hypoxia stress response and increase the sensitivity of TNBC tumors to
therapy remains a top clinical priority. Upon hypoxic stress, cancer cells initiate a transcriptional program that
enables them to survive and migrate from an inhospitable microenvironment. While hypoxia-inducible factors
(HIFs) are generally considered the main effectors, growing evidence suggests the hypoxia cellular response is
much more complex and requires coordinated signaling with other stress response factors. One promising
candidate is BACH1, a transcription factor that is induced by hypoxia and represses transcription of genes
involved in heme oxidation and anti-oxidant production. Based on preliminary results, we now hypothesize that
BACH1 is stabilized by hypoxia and functions as a key inducer of the cellular hypoxia response in TNBC
cells leading to abnormal leaky vasculature that contributes to intratumoral hypoxia and radiation
resistance. Specifically, we plan to: 1. Determine whether BACH1 is regulated by oxygen and induces a
transcriptional hypoxic stress response in TNBC cells; 2. Determine whether BACH1 promotes angiogenesis,
leaky vasculature and hypoxia in TNBC tumors; and 3. Determine whether BACH1 depletion sensitizes TNBC
tumors to radiation. We propose that targeting BACH1 represents a unique strategy for increasing tumor
oxygenation to improve the efficacy of cytotoxic, standard-of-care therapies such as radiation. Normalizing
vasculature to suppress leakiness should also facilitate drug delivery to tumors. Since BACH1 can be targeted
by an FDA approved drug either alone or in combination with HIF inhibitors, the proposed work could lead to a
clinical trial in breast cancer and other cancer patients whose treatment involves radiation therapy.
三阴性乳腺癌 (TNBC) 是乳腺癌中最具侵袭性和转移性的亚型之一
女性癌症死亡的主要原因。 TNBC 的生存率也较低,主要是本地人
癌症。 TNBC 中激素受体的丧失和 HER2 过度表达的缺乏限制了治疗
细胞毒性疗法(例如放射疗法)是 10-15% 乳腺癌患者的关键临床策略。缺氧
是对放疗、化疗甚至免疫治疗产生耐药性的主要原因。因此,识别
抑制缺氧应激反应并增加 TNBC 肿瘤敏感性的机制
治疗仍然是临床的首要任务。在缺氧应激下,癌细胞启动转录程序
使它们能够在恶劣的微环境中生存并迁移。而缺氧诱导因素
(HIF)通常被认为是主要效应器,越来越多的证据表明缺氧细胞反应是
更为复杂,需要与其他应激反应因素协调信号传导。一位有前途的
候选者是 BACH1,一种由缺氧诱导并抑制基因转录的转录因子
参与血红素氧化和抗氧化剂的产生。根据初步结果,我们现在假设
BACH1 通过缺氧而稳定,并作为 TNBC 细胞缺氧反应的关键诱导物发挥作用
细胞导致脉管系统异常渗漏,导致瘤内缺氧和辐射
反抗。具体来说,我们计划: 1.确定BACH1是否受到氧气调节并诱导
TNBC 细胞的转录缺氧应激反应; 2.确定BACH1是否促进血管生成,
TNBC 肿瘤中的脉管系统渗漏和缺氧; 3. 确定 BACH1 耗尽是否会使 TNBC 敏感
肿瘤对辐射的影响。我们认为,靶向 BACH1 是一种增加肿瘤生长的独特策略。
氧合以提高细胞毒性、标准护理疗法(例如放射疗法)的疗效。正火化
抑制渗漏的脉管系统也应有利于药物向肿瘤的输送。由于 BACH1 可以作为目标
通过 FDA 批准的药物单独或与 HIF 抑制剂联合使用,拟议的工作可能会导致
在乳腺癌和其他涉及放射治疗的癌症患者中进行的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARSHA R ROSNER其他文献
MARSHA R ROSNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARSHA R ROSNER', 18)}}的其他基金
Tumor-stromal interactions as targets of tumor metastasis suppressors
肿瘤-基质相互作用作为肿瘤转移抑制因子的靶点
- 批准号:
8817963 - 财政年份:2015
- 资助金额:
$ 39.83万 - 项目类别:
Tumor-stromal interactions as targets of tumor metastasis suppressors
肿瘤-基质相互作用作为肿瘤转移抑制因子的靶点
- 批准号:
9223680 - 财政年份:2015
- 资助金额:
$ 39.83万 - 项目类别:
Modulation of Head and Neck Cancer by Protein Kinase C
蛋白激酶 C 对头颈癌的调节
- 批准号:
6815669 - 财政年份:2004
- 资助金额:
$ 39.83万 - 项目类别:
Modulation of Head and Neck Cancer by Protein Kinase C
蛋白激酶 C 对头颈癌的调节
- 批准号:
7423949 - 财政年份:2004
- 资助金额:
$ 39.83万 - 项目类别:
Modulation of Head and Neck Cancer by Protein Kinase C
蛋白激酶 C 对头颈癌的调节
- 批准号:
6936629 - 财政年份:2004
- 资助金额:
$ 39.83万 - 项目类别:
Role of Raf Kinase Inhibitory Protein in Prostate Cancer
Raf 激酶抑制蛋白在前列腺癌中的作用
- 批准号:
7154753 - 财政年份:2004
- 资助金额:
$ 39.83万 - 项目类别:
Role of Raf Kinase Inhibitory Protein in Prostate Cancer
Raf 激酶抑制蛋白在前列腺癌中的作用
- 批准号:
7533439 - 财政年份:2004
- 资助金额:
$ 39.83万 - 项目类别:
Role of Raf Kinase Inhibitory Protein in Prostate Cancer
Raf 激酶抑制蛋白在前列腺癌中的作用
- 批准号:
6862222 - 财政年份:2004
- 资助金额:
$ 39.83万 - 项目类别:
相似国自然基金
酚类抗氧化剂在陆生食物链中的生物富集、代谢及传递机制
- 批准号:42377214
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
农用地膜抗氧化剂的土壤污染特征及其微生物效应与机制研究
- 批准号:42377223
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
取代对苯二胺抗氧化剂及其醌衍生物的人体内暴露标志物研究
- 批准号:22306031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗氧化剂/活性离子时序释放复合支架构建及其修复糖尿病骨缺损的机制研究
- 批准号:32360232
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
塑料抗氧化剂内分泌干扰转化产物的识别与环境行为研究
- 批准号:22306042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neuroprotective mechanisms of Bach1-Derepression in Alzheimer’s Disease
Bach1 去抑制在阿尔茨海默病中的神经保护机制
- 批准号:
10434394 - 财政年份:2022
- 资助金额:
$ 39.83万 - 项目类别:
Molecular mechanism of dysregulated airway antiviral responses in children with Trisomy 21
21三体症儿童气道抗病毒反应失调的分子机制
- 批准号:
10296156 - 财政年份:2021
- 资助金额:
$ 39.83万 - 项目类别:
Development of fetal hemoglobin inducers targeting epigenetic and oxidative stress mechanisms
针对表观遗传和氧化应激机制的胎儿血红蛋白诱导剂的开发
- 批准号:
10602522 - 财政年份:2020
- 资助金额:
$ 39.83万 - 项目类别:
Development of fetal hemoglobin inducers targeting epigenetic and oxidative stress mechanisms
针对表观遗传和氧化应激机制的胎儿血红蛋白诱导剂的开发
- 批准号:
10385817 - 财政年份:2020
- 资助金额:
$ 39.83万 - 项目类别:
Role of Bach-1-Mediated Transcriptional Regulation in Neuroprotection
Bach-1 介导的转录调控在神经保护中的作用
- 批准号:
9933558 - 财政年份:2017
- 资助金额:
$ 39.83万 - 项目类别: