Acoustic Modeling of skull bone for improved transcranial MR-guided focused ultrasound therapy
颅骨声学建模用于改进经颅 MR 引导聚焦超声治疗
基本信息
- 批准号:10752399
- 负责人:
- 金额:$ 4.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-20 至 2025-07-19
- 项目状态:未结题
- 来源:
- 关键词:AblationAcousticsAffectAlgorithmsBathingBlood - brain barrier anatomyCell NucleusCephalicCharacteristicsClinicalClinical DataClinical TreatmentCompensationComplexComputed Tomography ScannersDataDependenceDevicesDiseaseDrug Delivery SystemsEligibility DeterminationEquationEssential TremorFDA approvedFocused UltrasoundFocused Ultrasound TherapyFoundationsFutureGoalsHeatingHigh Resolution Computed TomographyHumanHybridsIndividualMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMentorsMethodsModalityModelingMonitorMorbidity - disease rateNeurologyPatientsPhasePositioning AttributeProceduresPropertyResearchResearch TrainingSafetySamplingScanningSpeedStimulusSystemTemperatureThalamic structureTherapeuticThermal Ablation TherapyThermometryTissuesWaterWorkX-Ray Computed Tomographyattenuationbonecostcraniumexperienceexperimental studyimprovedindividualized medicinemortalitynervous system disorderneuroregulationnovelpressuresimulationsoundtransmission processtreatment durationultrasound
项目摘要
Project Summary/Abstract (Limit 30 lines)
This proposal aims to improve the patient-specific Computed Tomography (CT)-derived modeling of
transcranial focused ultrasound by comparing acoustic and thermal simulations to hydrophone scans of
excised skull flaps and clinical magnetic resonance thermometry (MRTI) from Essential Tremor (ET)
thalamotomy treatments. Magnetic resonance-guided transcranial focused ultrasound (tMRgFUS) is a non-
invasive therapeutic modality used to treat a wide variety of neurological disorders. tMRgFUS relies on tightly
focusing the ultrasound beam through the inhomogeneous human skull. A fundamental challenge is accurately
determining the acoustic properties of the skull to phase-compensate for the inhomogeneities. Furthermore,
acoustic parameters such as speed of sound c and attenuation α may change with increased temperature,
causing further defocusing. Inaccurate acoustic parameters can result in off-target heating, longer treatment
times, and failed treatments.
This project will improve the focusing of ultrasound through the human skull by accurately determining
individual skull acoustic parameters. The Hybrid Angular Spectrum (HAS) beam simulation method and the
Pennes bioheat equation can simulate pressure fields and thermal rises by mapping acoustic and thermal
parameters to CT Hounsfield Units. The results of these simulations may be compared to experimental data to
determine the accuracy of tFUS acoustic and thermal modeling. Applying this method in reverse, a surrogate
optimization algorithm, which excels at black-box expensive optimization problems, will be used to iteratively
adjust simulation parameters to fit experimental data using a cost function. Aim I will determine the relationship
of the acoustic properties of bone to CT Hounsfield Units. An optimization algorithm will iteratively adjust the
acoustic parameter mapping such that a cost function comparing simulated and measured transmitted acoustic
pressures is minimized. The resulting optimal acoustic parameters accurately model transcranial acoustic
transmission. Aim II will determine the cause of reduced treatment efficiency with high acoustic powers during
tMRgFUS. An optimization algorithm will iteratively adjust the acoustic and thermal parameters to minimize a
cost function comparing simulation to MRTI data from clinical ET Thalamotomy patients.
This work will improve acoustic modeling through the human skull, which is the first step in improving
transcranial focused ultrasound therapy. According to the Focused Ultrasound Foundation, tMRgFUS could be
applied to at least 34 neurological disorders. Thus, this work could have a magnified effect, significantly
reducing morbidity and mortality across the field of neurology.
项目摘要/摘要(极限30行)
该建议旨在改善特定于患者的计算机断层扫描(CT)衍生的建模
通过将声学和热模拟与水文扫描进行比较
来自必需震颤(ET)的优质颅骨皮瓣和临床磁共振温度计(MRTI)
丘脑切开术。磁共振引导的trancranial聚焦超声(TMRGFU)是非 -
用于治疗多种神经系统疾病的侵入性治疗方式。 TMRGFU紧紧依赖
通过不均匀的人类头骨将超声梁聚焦。基本挑战是准确的
确定颅骨的声学特性,以使其不均匀性。此外,
声学参数(例如声音C速度和衰减α)可能随温度升高而变化,
导致进一步的散焦。声学参数不正确会导致脱靶加热,更长的处理
时代和治疗失败。
该项目将通过准确确定通过人类头骨来改善超声的关注
单个头骨声学参数。杂交角光谱(HAS)梁模拟方法和
Pennes Bioeheat方程可以通过绘制声学和热量来模拟压力场和热升高
CT Hounsfield单位的参数。这些模拟的结果可以与实验数据进行比较
确定TFU声学和热建模的准确性。反向应用此方法,替代
优化算法在Black-Box昂贵的优化问题上脱颖而出,将用于迭代
调整模拟参数,以使用成本函数拟合实验数据。目的我将确定关系
骨骼到CT Hounsfield单位的声学特性。优化算法将迭代调整
声学参数映射使得成本函数比较模拟和测量的传输声学
压力最小化。所得的最佳声学参数准确地模拟了thrancranial声学
传播。 AIM II将确定在高声能力中降低治疗效率的原因
tmrgfus。优化算法将迭代调整声学和热参数,以最大程度地减少
成本函数比较临床和丘脑术患者的模拟与MRTI数据。
这项工作将通过人类头骨改善声学建模,这是改善的第一步
thrancranial聚焦超声疗法。根据专注的超声基础,TMRGFU可能是
适用于至少34种神经系统疾病。那,这项工作可能会产生放大的效果
降低神经病领域的发病率和死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Clinard其他文献
Sam Clinard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水翼前缘空化对流场声学压力特性影响研究
- 批准号:52309117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热力学平衡态气相粘度测量中声学共振能量耗散机理及影响规律研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
热力学平衡态气相粘度测量中声学共振能量耗散机理及影响规律研究
- 批准号:52276169
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
不同声学响应支架对缺血组织血管生成影响的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同声学响应支架对缺血组织血管生成影响的机制研究
- 批准号:82102075
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 4.21万 - 项目类别:
Acoustic Cavitation Emission (ACE) Feedback Methods for Monitoring Histotripsy-Induced Tissue Fractionation In Situ
用于监测组织解剖诱导的原位组织分割的声空化发射 (ACE) 反馈方法
- 批准号:
10415606 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
Acoustic Cavitation Emission (ACE) Feedback Methods for Monitoring Histotripsy-Induced Tissue Fractionation In Situ
用于监测组织解剖诱导的原位组织分割的声空化发射 (ACE) 反馈方法
- 批准号:
10670176 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别:
Novel Mechano-Acoustic Enhancement of Immunotherapy
免疫治疗的新型机械声增强
- 批准号:
10544783 - 财政年份:2022
- 资助金额:
$ 4.21万 - 项目类别: