Piezo2-mediated neuroplasticity in osteoarthritis
Piezo2 介导的骨关节炎神经可塑性
基本信息
- 批准号:10752471
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationActivities of Daily LivingAfferent NeuronsAnimal BehaviorAnimal ModelArthralgiaArthritisAttenuatedBehaviorBiological AssayBloodBradykininCartilageCellsChronicCombined Modality TherapyCommunicationComplexCritical ThinkingDataDegenerative polyarthritisDevelopmentDiseaseEnzyme-Linked Immunosorbent AssayExhibitsExperimental DesignsFlow CytometryGeneticGoalsGrantHigh PrevalenceHistologyHumanHyperalgesiaImageImmuneIn VitroInduction of ApoptosisInflammationInflammation MediatorsInflammatoryInjectionsIon ChannelJointsKneeKnee jointKnock-outKnowledgeLearningLegLinkMacrophageMeasurementMechanical StimulationMechanicsMedialMedial meniscus structureMediatingMediatorModelingMolecularMovementMusNatureNerveNerve Growth FactorsNeuroimmuneNeurologicNeuronal PlasticityNeuronsNeurosciencesNociceptorsNon-Steroidal Anti-Inflammatory AgentsOperative Surgical ProceduresOutcomePainPain managementPathologyPathway interactionsPatientsPeptide HydrolasesPersistent painPhenocopyPiezo 2 ion channelPlayPreventionProcessProductionQuality of lifeReportingResearchRoleRouteSpinal GangliaSpinal cord posterior hornSwellingSynovial FluidSynovial MembraneSynovitisSystemTechniquesTestingTherapeuticTherapeutic InterventionTrainingWeightWeight-Bearing stateattenuationcareerchronic paincytokinedisabilitydisabling symptomeffective therapyeffectiveness evaluationimmune activationin vivo calcium imagingjoint inflammationjoint injuryjoint loadingmechanical loadmechanical signalmechanical stimulusmechanotransductionmouse modelneuroinflammationnovelosteoarthritis painpain behaviorpreventrecruitskillstranscriptome sequencingtranscriptomics
项目摘要
Project Summary
Despite the high prevalence of chronic pain and disability due to osteoarthritis (OA), there currently is no
effective treatment available to stop progression or manage pain long term. Patients often report ceasing
activities they found previously enjoyable or avoiding activities required for daily living due to the highly
mechanosensitive nature of OA pain. Our understanding of OA has evolved from a wear and tear mindset to a
complex disease state involving the immune and neurological systems, indeed there is an increase in immune
cells and inflammatory mediators within the synovial fluid of humans and mice. Further in mice we see an
increase in macrophages in knee innervating dorsal root ganglia (DRG); prevention of macrophage
recruitment, by macrophage depletion or nociceptor silencing, has shown promise in reducing OA pain like
behaviors. Interestingly, mice with Piezo2, a mechanically activated ion channel, knocked out from nociceptors
demonstrate a reduction in pain behavior in two models of joint pain and are protected from joint swelling.
Within animal modeling of OA there is evidence of altered neuroplasticity and sensitization that is attenuated
by anti-nerve growth factor (NGF) therapy and through inhibition of Piezo2 suggesting an interplay between
mechanical stimuli and inflammation in neuroplasticity. Unloading has been shown to silence mechanical
signal transduction, decrease the expression of harmful proteases in the knee and is more effective in reducing
synovitis than combination treatment with NSAIDs. However, no study has assessed the effect of unloading on
pain associated neuroplasticity. We believe that mechanical signaling is a key player in macrophage
recruitment and sensitization in OA, specifically through Piezo2. Therefore, our central hypothesis is:
mechanical stimuli are necessary for joint neuroplasticity and inflammatory mechanical sensitization and by
inhibiting mechanotransduction we will effectively reduce immune cell recruitment, abhorrent neuroplasticity
and thus pain. Aim 1 will assess the effectiveness of inhibition of mechanical stimuli through Piezo2CKO in
reducing immune cell recruitment to the knee and DRG. Aim 2 will tease apart the interplay of mechanical
loading and inflammation in pain associated neuroplasticity by mechanically unloading mice to determine if
altered neuroplasticity occurs under experimental pain conditions. This project will provide me the opportunity
to learn new skills (flow cytometry, in vivo calcium imaging, sequencing) and develop novel techniques. I will
also be given the opportunity to enhance skillsets required to achieve my career goals i.e. experimental design,
scientific communication, critical thinking etc. Completion of the proposed project will increase our
understanding of the interplay of mechanical information and immune cell dynamics in pain development and
open the doors to routes of selective therapeutic intervention.
项目概要
尽管骨关节炎(OA)引起的慢性疼痛和残疾的患病率很高,但目前还没有
有效的治疗可阻止病情进展或长期控制疼痛。患者经常报告停止治疗
他们以前认为有趣的活动或由于高度紧张而避免日常生活所需的活动
OA 疼痛的机械敏感性。我们对 OA 的理解已经从磨损思维转变为
涉及免疫和神经系统的复杂疾病状态,确实存在免疫增强
人类和小鼠滑液中的细胞和炎症介质。我们进一步在小鼠身上看到
膝关节支配背根神经节(DRG)的巨噬细胞增加;巨噬细胞的预防
通过巨噬细胞耗竭或伤害感受器沉默进行的募集已显示出减轻 OA 疼痛的希望
行为。有趣的是,带有 Piezo2(一种机械激活的离子通道)的小鼠,其伤害感受器被敲除
在两种关节疼痛模型中证明疼痛行为减少,并防止关节肿胀。
在 OA 动物模型中,有证据表明神经可塑性发生改变,并且敏化减弱
通过抗神经生长因子 (NGF) 治疗和通过抑制 Piezo2 表明两者之间存在相互作用
神经可塑性中的机械刺激和炎症。卸载已被证明可以使机械静音
信号转导,减少膝关节有害蛋白酶的表达,更有效地减少
滑膜炎优于与 NSAID 联合治疗。然而,尚无研究评估卸载对
疼痛相关的神经可塑性。我们相信机械信号是巨噬细胞的关键角色
OA 中的募集和敏化,特别是通过 Piezo2。因此,我们的中心假设是:
机械刺激对于关节神经可塑性和炎症机械敏化是必要的
抑制机械转导,我们将有效减少免疫细胞的招募和令人厌恶的神经可塑性
从而带来痛苦。目标 1 将评估通过 Piezo2CKO 抑制机械刺激的有效性
减少膝盖和背根神经节的免疫细胞募集。目标 2 将梳理机械之间的相互作用
通过机械卸载小鼠来确定疼痛相关神经可塑性的负荷和炎症,以确定是否
在实验性疼痛条件下,神经可塑性发生改变。这个项目将为我提供机会
学习新技能(流式细胞术、体内钙成像、测序)并开发新技术。我会
也有机会增强实现我的职业目标所需的技能,即实验设计,
科学沟通、批判性思维等。完成拟议项目将提高我们的能力
了解机械信息和免疫细胞动力学在疼痛发展中的相互作用
打开选择性治疗干预途径的大门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalie Adamczyk其他文献
Natalie Adamczyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluation of mechanistic role of artemin/GFRα3 signaling in osteoarthritis pain
artemin/GFRα3 信号在骨关节炎疼痛中的机制作用评估
- 批准号:
10444070 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Evaluation of mechanistic role of artemin/GFRα3 signaling in osteoarthritis pain
artemin/GFRα3 信号在骨关节炎疼痛中的机制作用评估
- 批准号:
10615824 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
- 批准号:
10514601 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
- 批准号:
10292959 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
CMA: Cartilage Repair Strategies to Alleviate Arthritic Pain (CaRe AP): Novel cell-based therapies to increase functional outcomes and alleviate pain in preclinical models of osteoarthritis
CMA:减轻关节炎疼痛的软骨修复策略 (CaRe AP):基于新型细胞的疗法,可提高骨关节炎临床前模型的功能结果并减轻疼痛
- 批准号:
10013786 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别: