Multisensory integration and self-motion perception in primate vestibular cortex
灵长类动物前庭皮层的多感觉整合和自我运动感知
基本信息
- 批准号:10753017
- 负责人:
- 金额:$ 7.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2025-08-15
- 项目状态:未结题
- 来源:
- 关键词:AnimalsAreaAuditoryAutomobile DrivingAwarenessBehaviorBehavioralBody partBrainCellsClinicalCognitiveCutaneousEnvironmentEquilibriumEthologyFunctional disorderGaitGoalsHeadHead MovementsHumanImpairmentIndividualInjuryInsula of ReilLearningLesionModalityModelingMotionMotion PerceptionMotorMovementMusculoskeletal EquilibriumNeuronal DifferentiationNeuronsOrganismOutcomeParietal LobePatientsPerceptionPhysiciansPlayPopulationPosturePrimatesProcessReportingResearchRoleSchemeSelf PerceptionSensorySignal TransductionSkeletal muscle structure of neckSpace PerceptionStimulusStreamSystemTactileTestingThalamic NucleiThalamic structureVertebratesVestibular nucleus structureVisualclinically relevantcognitive functioncognitive processdensityexperienceexperimental studyextracellulargazeimaging studyimprovedinsightmultimodalitymultisensoryneuralneuromechanismneurophysiologynonhuman primateresponsesensory inputsensory integrationsomatosensoryway finding
项目摘要
Project Summary
In vertebrate animals, the vestibular system (primarily known as the “balance system” of the brain) interprets
head-movement and orientation signals to provide organisms with a sense of self-motion. The vital contribution
of vestibular system to reflexive control of posture, gaze, and gait is well characterized; however, far less is
known about the neural substrates underlying higher-order vestibular functions, such as the perception of self-
motion and the awareness of one's orientation in space. These functions rely on the cortical integration of
vestibular input with somatosensory and visual input. In non-human primates, the parieto-insular vestibular
cortex (PIVC) is uniquely suited to perform this multisensory integration. Unlike other vestibular-sensitive cortical
areas, PIVC has direct access to vestibular, somatosensory, and visual input from the thalamus; indeed, it is
hypothesized that other vestibular cortical areas receive their vestibular input from PIVC, thus making it a nexus
for higher-order vestibular function. Despite its hypothesized importance, extremely little is known about the
neural mechanisms by which PIVC integrates vestibular and extra-vestibular input, and whether this integration
is context dependent. For example, it is unclear whether PIVC neurons differentiate between vestibular input
generated during passive vs. active movements; such differentiation is seen in the vestibular nuclei and thalamus
and is thought to be essential for producing a sense of motor agency. To investigate these issues, I propose to
conduct high-density neurophysiological recordings in behaving primates during both passive stimulation and
actively generated head and whole-body movement. In Aim 1, I will investigate how PIVC integrates passively
applied vestibular and somatosensory input (Aim 1.1) and then vestibular and visual input (Aim 1.2). In Aim 2, I
will investigate whether PIVC differentially processes vestibular input during passive and active movement.
Specifically, I will examine how PIVC processes vestibular input generated during natural self-motion (i.e., self-
motion relying on sensorimotor input in the form of a head-turning task, Aim 2.1). I will then examine how PIVC
processes vestibular input generated during a learned, cognitively demanding motor task (Aim 2.2). In both aims,
I will determine how individual neurons in PIVC encode vestibular and extra-vestibular input, as well as how this
information is represented at the population level. The proposed experiments will resolve two questions which
are fundamental to understanding PIVC function: 1) How does PIVC integrate multisensory input to construct a
percept of self-motion? and 2) Is the processing of self-motion by PIVC neurons consistent with that required to
provide a sense of motor agency? Furthermore, the proposed experiments will determine how sensorimotor and
cognitive percepts of self-motion are represented in PIVC. This research will provide new insights into cortical
vestibular function and how it supports the higher-order processes that allow primates (both human and non-
human) to successfully perceive and navigate their environments.
项目概要
在脊椎动物中,前庭系统(主要称为大脑的“平衡系统”)解释
头部运动和方向信号为生物体提供自我运动感的重要贡献。
前庭系统对姿势、凝视和步态的反射性控制的作用已经得到了很好的描述,但目前还不清楚。
了解高阶前庭功能的神经基础,例如自我感知
运动和空间方位意识这些功能依赖于大脑皮层的整合。
在非人类灵长类动物中,顶岛前庭具有体感和视觉输入。
与其他前庭敏感皮层不同,皮层(PIVC)非常适合执行这种多感觉整合。
事实上,PIVC 可以直接访问来自丘脑的前庭、体感和视觉输入;
培养其他前庭皮质区域从 PIVC 接收前庭输入,从而使其成为一个纽带
尽管它很重要,但人们对高阶前庭功能知之甚少。
PIVC 整合前庭和前庭外输入的神经机制,以及这种整合是否
例如,尚不清楚 PIVC 神经元是否区分前庭输入。
在被动运动与主动运动期间产生;这种分化可见于前庭核和丘脑。
并被认为对于产生汽车代理感至关重要。为了研究这些问题,我建议:
对灵长类动物在被动刺激和
在目标 1 中,我将研究 PIVC 如何被动集成。
应用前庭和体感输入(目标 1.1),然后应用前庭和视觉输入(目标 2,I)。
将研究 PIVC 在被动和主动运动期间是否有差异地处理前庭输入。
具体来说,我将研究 PIVC 如何处理自然自我运动(即自我运动)过程中产生的前庭输入。
运动依赖于头部转动任务形式的感觉运动输入,目标 2.1)然后我将研究 PIVC 如何进行。
处理在学习的、认知要求高的运动任务中产生的前庭输入(目标 2.2)。
我将确定 PIVC 中的单个神经元如何编码前庭和前庭外输入,以及如何编码
所提出的实验将解决两个问题:
是理解 PIVC 功能的基础: 1) PIVC 多感官输入如何构建一个
自我运动的感知?2)外周静脉神经元对自我运动的处理是否与所需的一致?
此外,拟议的实验将确定感觉运动和
自我运动的认知感知在 PIVC 中得到体现,这项研究将为皮质层提供新的见解。
前庭功能及其如何支持允许灵长类动物(人类和非人类)的高阶过程
人类)成功地感知和导航他们的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alejandra Gomez其他文献
Alejandra Gomez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
- 批准号:
10677342 - 财政年份:2023
- 资助金额:
$ 7.37万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 7.37万 - 项目类别:
Identifying Convergent Circuit Disruptions Across Genetically-Distinct Models of Autism
识别基因不同的自闭症模型中的收敛回路中断
- 批准号:
10638144 - 财政年份:2023
- 资助金额:
$ 7.37万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 7.37万 - 项目类别: