Causal mechanisms of anesthetic induction and emergence in human cortical organoids
人类皮质类器官麻醉诱导和苏醒的因果机制
基本信息
- 批准号:10752425
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcetylcholineAminobutyric AcidsAnesthesia proceduresAnestheticsAnimal ModelAreaAssessment toolAwarenessBrainCerebrumChemosensitizationClinicalComaComplexConsciousDeliriumDevelopmentDopamineEmbryoEntropyEventExhibitsExposure toFeedbackFoundationsFrequenciesGeneral AnesthesiaHistamineHumanHypothalamic structureIn VitroInterventionLateralLength of StayMediatingModelingMolecularNeurogliaNeuronsNorepinephrineOrganoidsPathologicPatientsPersistent Vegetative StatePlayProcessPropofolProtocols documentationRecoveryResearchRoleStructureSystemTestingThalamic structureTimeUnconscious StateVegetative Statesawakebasal forebraincare costscholinergicexcitatory neuronexperiencehigh throughput screeninghuman pluripotent stem cellhuman tissuehypocretinimprovedin vivoinduced pluripotent stem cellinhibitory neuronlocus ceruleus structuremammilloinfundibular nucleus structuremethod developmentneuralneural circuitneuroregulationnoradrenergicnovelnovel therapeuticsphenomenological modelsraphe nucleireceptorrespiratoryscreeningtool
项目摘要
PROJECT SUMMARY
This project aims to use human cortical organoids, which are cortex-like structures generated in vitro from
human induced pluripotent stem cells (hiPSCs), to resolve outstanding questions in our understanding of
causal mechanisms underlying the mesoscale phenomenology of anesthetic induction (AI) and anesthetic
emergence (AE). Millions of patients undergo general anesthesia every year, but the mechanisms by which
anesthetic drugs give rise to the hallmarks of AI remain unresolved. Even less well understood are the
mechanisms by which the brain emerges from anesthesia - a process over which clinicians have almost no
control, and which is frequently associated with complications such as emergence delirium, respiratory events,
and delayed emergence, which results in prolonged hospital stays and increased cost of care. In addition, 1-2
per every 1000 patients will experience intraoperative awareness with explicit recall, for reasons that are not
understood. While a number of hypotheses regarding the mechanisms of AI and AE have been put forward,
these hypotheses are still debated because of complex inter-circuit interactions during AI and AE in the intact
brain. In particular, it is widely believed that the major cause of AI is the potentiation of cortical GABAa
receptors, but it has been difficult to disentangle the effects of cortical GABAa potentiation from the subcortical
effects of anesthesia, which may likewise contribute to AI. Similarly, though it is generally believed that at least
one, if not several cortically projecting neuromodulatory structures - including the histaminergic
tuberomammillary nucleus of the hypothalamus, the cholinergic basal forebrain, the serotonergic raphe nuclei,
the orexinergic lateral hypothalamus, and the noradrenergic locus coeruleus - directly drive emergence from
anesthesia, these systems are densely interconnected and mutually excitatory. For this reason, in vivo
research has been unable to resolve which, if any, of these systems directly cause AE. A promising but
completely unexplored tool for resolving these questions are human cortical organoids. Our team has recently
developed a protocol for fusing together networks of excitatory and inhibitory cortical-like neurons derived from
hiPSCs. These fusion cortical organoids can recapitulate the oscillatory electric activity of the awake human
cortex, and our preliminary results suggest that these cortical organoids can mimic the mesoscale hallmarks of
AI when they are exposed to the anesthetic propofol. Importantly, cortical organoids consist of purely cortical-
like human tissue, and lack any influence from subcortical structures or neuromodulatory systems. This allows
us to use human cortical organoids to isolate cortical versus non-cortical causal mechanisms of both AI and
AE. Successful modeling of AI and AE in brain organoids would illustrate the utility of these structures in high-
throughput screening of novel drugs for inducing anesthesia or emergence from anesthesia, potentially even
on a single-patient basis. Additionally, this project would establish the potential for human brain organoids in
screening therapies for other states of unconsciousness, such as coma and persistent vegetative states.
项目概要
该项目旨在使用人类皮质类器官,它们是在体外产生的类皮质结构
人类诱导多能干细胞(hiPSC),以解决我们理解中的突出问题
麻醉诱导(AI)和麻醉的中尺度现象学背后的因果机制
出现(AE)。每年有数百万患者接受全身麻醉,但全身麻醉的机制
麻醉药物引起人工智能的特征仍未解决。更不为人所知的是
大脑从麻醉中苏醒的机制——临床医生几乎不知道这个过程
控制,并且经常与并发症相关,例如苏醒性谵妄、呼吸事件、
延迟出现,导致住院时间延长并增加护理费用。另外,1-2
每 1000 名患者中就有 1 名患者会经历术中意识并具有明确的回忆,但原因并非如此
明白了。虽然已经提出了许多关于 AI 和 AE 机制的假设,
由于完整的 AI 和 AE 过程中复杂的电路间相互作用,这些假设仍然存在争议。
脑。特别是,人们普遍认为,AI的主要原因是皮质GABAa的增强
受体,但很难将皮质 GABAa 增强作用与皮质下的作用区分开来。
麻醉的影响,这同样可能导致人工智能。同样,尽管人们普遍认为至少
一个(如果不是几个的话)皮质突出的神经调节结构 - 包括组胺能
下丘脑结节乳头核、胆碱能基底前脑、血清素能中缝核、
食欲素能外侧下丘脑和去甲肾上腺素能蓝斑 - 直接驱动从
在麻醉中,这些系统紧密相连且相互兴奋。为此,体内
研究无法确定这些系统中的哪一个(如果有的话)直接导致 AE。一个有希望但
解决这些问题的完全未经探索的工具是人类皮质类器官。我们团队最近
开发了一种将兴奋性和抑制性皮质样神经元网络融合在一起的协议
hiPSC。这些融合皮质类器官可以重现清醒人类的振荡电活动
皮层,我们的初步结果表明这些皮质类器官可以模仿大脑皮层的中尺度特征
AI 当他们接触麻醉剂异丙酚时。重要的是,皮质类器官由纯粹的皮质组成
像人体组织一样,并且不受皮层下结构或神经调节系统的任何影响。这允许
我们使用人类皮质类器官来分离人工智能和非皮质因果机制
AE。大脑类器官中 AI 和 AE 的成功建模将说明这些结构在高
用于诱导麻醉或苏醒的新型药物的通量筛选,甚至可能
以单个患者为基础。此外,该项目将确定人脑类器官在以下方面的潜力:
筛选其他无意识状态的治疗方法,例如昏迷和持续植物人状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Toker其他文献
Daniel Toker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于芋螺毒素肽RgIA的α9α10烟碱型乙酰胆碱受体降解剂用于神经性疼痛治疗
- 批准号:22307083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙酰胆碱-巨噬细胞神经免疫轴在肿瘤运动康复中的作用及机制研究
- 批准号:82303930
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
烟碱型乙酰胆碱受体变异介导普通大蓟马对多杀菌素抗性机制研究
- 批准号:32360663
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
神经肽Y-Y1受体与α7烟碱型乙酰胆碱受体交互作用减轻急性肺损伤的机制研究
- 批准号:82300019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
慢性应激诱导肺上皮分泌乙酰胆碱重塑乳腺癌肺转移前微环境的机制研究
- 批准号:82303386
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing the structure and function of the intracellular domain of Cys-loop recept
Cys环受体胞内结构域的结构和功能探讨
- 批准号:
9032543 - 财政年份:2014
- 资助金额:
$ 7.18万 - 项目类别:
Structure of GABA-A Receptor Anion-Selective Channel
GABA-A 受体阴离子选择性通道的结构
- 批准号:
7797576 - 财政年份:1994
- 资助金额:
$ 7.18万 - 项目类别: