Aging Mitochondrial Interactome
衰老线粒体相互作用组
基本信息
- 批准号:10688325
- 负责人:
- 金额:$ 36.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayActivity CyclesAddressAgeAgingBiological AssayBiopsyBrainCardiovascular systemChemicalsCitric Acid CycleComplexDataElderlyElectron TransportFunctional disorderHeart MitochondriaHomeostasisHumanHydrogen PeroxideIn VitroIndividualInterventionKidneyLeadMapsMass Spectrum AnalysisMeasuresMediatingMembrane PotentialsMitochondriaMitochondrial ProteinsMolecularMusMuscleMuscle MitochondriaMuscle functionMyocardiumNatureOrganellesOxidantsOxidation-ReductionOxidative StressParaquatPathologyPathway interactionsPeptidesPermeabilityPhosphorylationPlayPositioning AttributeProductionProtein ConformationProteinsQuality of lifeReactive Oxygen SpeciesResearchRespirationRoleSiteSkeletal MuscleStressSystemTestingTissuesTranslatingTranslationsUncertaintyVisionage relatedagedbody systemcatalasecomplex IVcrosslinkexperimental studyfunctional declineheart functionhuman tissueimprovedin vivoinnovationinsightmitochondrial dysfunctionmitochondrial metabolismmouse modeloligomycin sensitivity-conferring proteinprotein complexpublic health relevanceresiliencetoolyoung adult
项目摘要
Changes in mitochondrial function play a central role in age-related pathologies, loss of resilience, and the
decline in quality of life in older adults. As we age there is a shift in our mitochondria toward a reduced ability to
generate ATP and increased oxidant production. These changes lead to disruption of redox and energy
homeostasis, altered metabolite levels, and increased sensitivity to permeability transition, all of which contribute
to tissue dysfunction. Mitochondria are dynamic organelles that continuously adapt to changing cellular demands
by altering protein assembly and interactions to modify their function. Despite the obvious importance, little is
known about how age-related changes in mitochondrial protein interactions (interactome) underlie changes in
function with age. To address this fundamental question, we propose to apply a state of the art quantitative
chemical cross-linking with mass spectrometry (qXL-MS) strategy to quantify changes in the mitochondrial
interactome with age. By combining this innovative qXL-MS approach with detailed assays of mitochondrial
metabolism and interventions we have developed over the last several years to manipulate mitochondria in vivo
and in vitro, we are uniquely positioned to identify the molecular level changes in mitochondrial interactome that
underlie age-related mitochondrial dysfunction. Our preliminary data indicate disruption of multiple protein
interaction networks involved in ADP transport, ATP synthesis, and substrate supply to the electron transport
system in aged heart and skeletal muscle. These changes are associated with previously demonstrated
decreases in ATP production and lower sensitivity to ADP. Furthermore, we have shown that a mitochondrial
targeted intervention (SS-31) that reverses mitochondrial dysfunction in heart and skeletal muscle, specifically
interacts with many of the same protein complexes that our interactome studies reveal are disrupted in aging,
including the ANT and complexes IV and V of the electron transport system. Our overall hypothesis tested in this
proposal is that changes in the mitochondrial interactome with age underlie decreased ATP production and
increased oxidant production in mitochondria from aged heart and skeletal muscle. Aim 1 applies XL-MS and
protein and site-specific mitochondrial assays to quantify changes in the mitochondrial interactome with age and
those induced by pro-oxidant treatment in vivo and in vitro in mouse heart and skeletal muscle. Aim 2 quantifies
the effect on the mitochondrial interactome of two well established mitochondrial targeted interventions, SS-31
and mitochondrial targeted catalase, to identify the most important age-related changes in the protein interaction
networks. Aim 3 tests whether changes in the mitochondrial interactome identified in aims 1 and 2 translate into
aged human skeletal muscle. The mitochondrial interactome, function, and effects of SS-31 from older adults
separated into low and high performing groups are compared with young adults. Results from these experiments
will have a significant impact and have the potential to transform the field by providing the first test of how
disruption of mitochondrial protein interactions contribute to age-related mitochondrial dysfunction.
1
线粒体功能的变化在与年龄相关的病理、恢复力丧失和
老年人的生活质量下降。随着年龄的增长,我们的线粒体的能力会降低
产生 ATP 并增加氧化剂的产生。这些变化导致氧化还原和能量的破坏
体内平衡、代谢物水平改变以及对渗透性转变的敏感性增加,所有这些都有助于
导致组织功能障碍。线粒体是动态细胞器,不断适应不断变化的细胞需求
通过改变蛋白质组装和相互作用来修改其功能。尽管重要性显而易见,但很少有
了解与年龄相关的线粒体蛋白质相互作用(相互作用组)的变化如何导致
功能随年龄增长。为了解决这个基本问题,我们建议应用最先进的定量方法
化学交联与质谱(qXL-MS)策略来量化线粒体的变化
与年龄的相互作用。通过将这种创新的 qXL-MS 方法与线粒体的详细分析相结合
我们在过去几年中开发的代谢和干预措施,用于在体内操纵线粒体
在体外,我们具有独特的优势来识别线粒体相互作用组的分子水平变化,
是与年龄相关的线粒体功能障碍的基础。我们的初步数据表明多种蛋白质被破坏
参与 ADP 传输、ATP 合成和电子传输底物供应的相互作用网络
衰老的心脏和骨骼肌系统。这些变化与之前证明的相关
ATP 产生减少,对 ADP 的敏感性降低。此外,我们还发现线粒体
定向干预(SS-31)可逆转心脏和骨骼肌的线粒体功能障碍,特别是
与许多相同的蛋白质复合物相互作用,我们的相互作用组研究表明,这些蛋白质复合物在衰老过程中受到破坏,
包括ANT和电子传递系统的复合物IV和V。我们的总体假设在此得到检验
推测线粒体相互作用组随年龄的变化是 ATP 产生减少的基础
衰老心脏和骨骼肌线粒体中氧化剂的产生增加。目标 1 应用 XL-MS 和
蛋白质和位点特异性线粒体测定,以量化线粒体相互作用组随年龄和年龄的变化
在小鼠心脏和骨骼肌中通过体内和体外促氧化处理诱导的那些。目标 2 量化
两种成熟的线粒体靶向干预措施 SS-31 对线粒体相互作用组的影响
和线粒体靶向过氧化氢酶,以确定蛋白质相互作用中最重要的与年龄相关的变化
网络。目标 3 测试目标 1 和 2 中确定的线粒体相互作用组的变化是否转化为
老化的人体骨骼肌。老年人 SS-31 的线粒体相互作用组、功能和作用
分为低表现组和高表现组,并与年轻人进行比较。这些实验的结果
将产生重大影响,并有可能通过提供第一个测试来改变该领域
线粒体蛋白质相互作用的破坏会导致与年龄相关的线粒体功能障碍。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Edward Bruce其他文献
James Edward Bruce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Edward Bruce', 18)}}的其他基金
Investigating treatment resistance mechanisms in chronic bacterial infections
研究慢性细菌感染的治疗耐药机制
- 批准号:
8341304 - 财政年份:2012
- 资助金额:
$ 36.14万 - 项目类别:
Investigating treatment resistance mechanisms in chronic bacterial infections
研究慢性细菌感染的治疗耐药机制
- 批准号:
8470546 - 财政年份:2012
- 资助金额:
$ 36.14万 - 项目类别:
Investigating treatment resistance mechanisms in chronic bacterial infections
研究慢性细菌感染的治疗耐药机制
- 批准号:
8685119 - 财政年份:2012
- 资助金额:
$ 36.14万 - 项目类别:
Investigating treatment resistance mechanisms in chronic bacterial infections
研究慢性细菌感染的治疗耐药机制
- 批准号:
9081460 - 财政年份:2012
- 资助金额:
$ 36.14万 - 项目类别:
相似国自然基金
雷达影像大地测量揭示的滑坡活动性在地震周期中的演化规律
- 批准号:42374019
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
SDSS宽发射线活动星系核中基于光谱及光学准周期光变对sub-pc双黑洞系统的研究
- 批准号:12373014
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
基于皮层时间环路周期与非周期活动的意识损伤机制与意识检测研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活动星系核外流的形成及其在准周期变脸活动星系核中的应用
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
活动星系核多波段周期性现象的搜寻和研究
- 批准号:12163006
- 批准年份:2021
- 资助金额:37 万元
- 项目类别:地区科学基金项目
相似海外基金
Growing and Sustaining Community Change Researchers in STEM
培养和维持 STEM 领域的社区变革研究人员
- 批准号:
10665411 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
The Effect of Sleep on Neural Circuit Connections
睡眠对神经回路连接的影响
- 批准号:
10739237 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Spatiotemporal regulation of polyploidy in zebrafish cardiac tissue regeneration
斑马鱼心脏组织再生中多倍体的时空调控
- 批准号:
10736051 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别:
Deciphering dopaminergic circuits required for food anticipatory activity in mice
破译小鼠食物预期活动所需的多巴胺能回路
- 批准号:
10629786 - 财政年份:2023
- 资助金额:
$ 36.14万 - 项目类别: