Rapid sugar sensing from gut to brain
从肠道到大脑的快速糖传感
基本信息
- 批准号:10676399
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAgonistAmericanAntidiabetic DrugsBariatricsBindingBrainCOVID-19Cardiovascular DiseasesCellsChronic DiseaseClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesConsumptionDataDesire for foodDiabetes MellitusDietDoctor of MedicineDoctor of PhilosophyElectrophysiology (science)Energy MetabolismEpithelial CellsFamilyFoodGlucose TransporterGlutamatesGoalsHealthHospitalizationHumanIn VitroIntakeInterventionIntestinesKnock-outLeadershipLifeLigandsMeasuresMediatingMembrane ProteinsMentorsMentorshipMetabolismMusNational Institute of Diabetes and Digestive and Kidney DiseasesNeurobiologyNeuronsNitrogenObesityOrganoidsOxygenPerfusionPharmacologic SubstancePhysiciansPositioning AttributeRecommendationRoleScientistSensorySignal TransductionSodiumStructureTestingTherapeuticTimeTrainingTranscriptVagus nerve structureabsorptioncareercomorbiditydetection of nutrientglucose transporthormonal signalsin vivoinhibitorintestinal epitheliummind controlneurogeneticsnovelpharmacologicreceptorresponsesensorskillssugar
项目摘要
PROJECT SUMMARY/ABSTRACT
The average American adult consumes over 40 pounds of sugar per year. While sugar intake is necessary for
energy metabolism and survival, this overconsumption has led to rampant obesity and diabetes. Therefore, it is
critical to determine the gut-brain circuit that drives sugar overconsumption. Recently, specialized sensory cells
in the intestinal epithelium, known as neuropod cells, were found to sense intestinal sugars and drive sugar
appetite. Neuropod cells sense sugars using sodium-glucose transporters (SGLTs). Most studies on intestinal
sugar sensing have focused on glucose transport ability itself, but little is known about sensing in the absence
of transport. Here, we will use an anti-diabetic molecule specific to human SGLTs to probe whether it is
glucose transport or sensing that is necessary to activate the neuropod cell sugar sensing circuit. My
hypothesis is that sugar sensing, in the absence of transport, will activate neuropod cells, causing glutamate
release and vagus nerve activity. Therefore, I am pursuing the following aims: 1) to determine whether specific
SGLT activation leads to neuropod cell glutamate release and 2) to determine whether an anti-diabetic
molecule leads to rapid, neuropod cell dependent vagal activity. My approach includes neurogenetic
manipulations of intestinal organoids and in vitro and in vivo electrophysiology. These studies may uncover a
pharmacological target for modulating rapid gut-brain control of food choice without perturbing life-sustaining
sugar absorption. My co-sponsors, Drs. Diego Bohórquez, Ph.D. and David D’Alessio, M.D., are experts in
neuropod cell nutrient sensing and hormone signaling in obesity, respectively. Consistent with their long-
established track record of mentorship, the proposed studies and training plan will provide me with the rigorous
scientific training and leadership skills necessary for a career as a physician-scientist based on gut-brain circuit
manipulation as a bariatric intervention.
项目概要/摘要
美国成年人平均每年消耗超过 40 磅的糖,而糖的摄入是人体必需的。
能量代谢和生存,这种过度消耗导致了肥胖和糖尿病的猖獗。
最近,专门的感觉细胞对确定导致糖过度消耗的肠脑回路至关重要。
在肠上皮细胞中,称为神经足细胞,被发现可以感知肠道糖并驱动糖
Neuropod 细胞使用钠-葡萄糖转运蛋白(SGLT)来感知糖。
糖传感主要集中在葡萄糖转运能力本身,但对于缺乏葡萄糖转运能力的情况下的传感知之甚少
在这里,我们将使用人类 SGLT 特异的抗糖尿病分子来探究它是否是。
葡萄糖转运或传感是激活神经足细胞糖传感电路所必需的。
假设是,在没有运输的情况下,糖感应会激活神经足细胞,导致谷氨酸
因此,我追求以下目标: 1)确定是否有特异性。
SGLT 激活导致神经足细胞谷氨酸释放,2) 以确定是否具有抗糖尿病作用
分子导致快速的神经足细胞依赖性迷走神经活动。
肠道类器官的操作以及体外和体内电生理学这些研究可能会揭示一个问题。
调节肠脑对食物选择的快速控制而不干扰生命维持的药理学目标
我的共同发起人迭戈·博霍尔克斯博士和大卫·达莱西奥医学博士是这方面的专家。
肥胖中的神经足细胞营养感应和激素信号传导分别与它们的长期研究一致。
已建立的指导记录,拟议的学习和培训计划将为我提供严格的指导
基于肠脑回路的医师科学家职业所需的科学培训和领导技能
操纵作为减肥干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Jean Alway其他文献
Emily Jean Alway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水体中β2-肾上腺素受体激动剂(PPCPs)间接光降解机理的量子化学与实验研究
- 批准号:22306084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
N-acetylserotonin alleviates neurotoxicity in alcohol misuse following TBI
N-乙酰血清素可减轻 TBI 后酒精滥用造成的神经毒性
- 批准号:
10591834 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Exercise Mimetics for Dementia and Alzheimer's Disease
治疗痴呆和阿尔茨海默病的模拟运动
- 批准号:
10586188 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Designed Multiple Ligands as Non-opioid Analgesics for Treating Chronic Pain
设计多种配体作为非阿片类镇痛药,用于治疗慢性疼痛
- 批准号:
10621646 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: