Nano-therapeutics Reprogramming of Immunosuppressive Myeloid Cells Potentiate Radiotherapy for Glioblastoma
免疫抑制性骨髓细胞的纳米治疗重编程可增强胶质母细胞瘤的放射治疗
基本信息
- 批准号:10671715
- 负责人:
- 金额:$ 35.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-26 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgonistAnimal ModelAnti-CD47Antitumor ResponseBrainBrain NeoplasmsCD47 geneCancer PatientCellsClinicalDataDevelopmentEffectivenessExperimental Animal ModelGene ActivationGenesGlioblastomaHumanImmuneImmune responseImmunologic SurveillanceImmunologicsImmunosuppressionImpairmentInfiltrationInflammatoryInflammatory ResponseInnate Immune SystemInterferonsKnowledgeLaboratoriesMainstreamingMalignant NeoplasmsMalignant neoplasm of brainMusMyelogenousMyeloid CellsMyeloid-derived suppressor cellsNanotechnologyNatureNewly DiagnosedPathway interactionsPhagocytesPhagocytosisPhenotypePlayPopulationRadiation therapyResearchResearch SupportResistanceRoleRouteSamplingShapesSignal PathwayStimulator of Interferon GenesT cell infiltrationT cell responseT-LymphocyteTestingTherapeuticTherapeutic EffectToxic effectTreatment outcomeTumor AntigensTumor ImmunityTumor PromotionTumor-associated macrophagesWorkanti-tumor immune responseantitumor effectcancer immunotherapycancer infiltrating T cellscancer therapyclinical translationclinically relevantcytotoxiceffectiveness evaluationeffectiveness testingeffector T cellgenotoxicityhumanized mouseimmunogenic cell deathin vivointerestlipid nanoparticlemouse modelnanoparticlenanotherapeuticneoplastic cellnovel strategiespre-clinicalprogramsradiation effectresponsestandard of caresuccesstargeted deliverytargeted treatmenttemozolomidetherapeutic nanoparticlestherapeutic targettherapy resistanttreatment effecttreatment strategytumortumor microenvironmenttumor-immune system interactions
项目摘要
PROJECT SUMMARY/ABSTRACT
Radiation therapy (RT) is a key component of standard of care treatments for glioblastoma (GBM), the most
common and deadly primary brain malignancy in adults. Beyond the direct cytotoxic effect on tumor itself, RT-
elicited anti-tumor immune responses have recently been appreciated as a key factor to the treatment outcomes.
These responses are dependent on the functionality of myeloid cells, an essential component of the innate
immune system. However, within tumor microenvironment, much of the myeloid compartment is programed to
be immunosuppressive, which impairs the anti-tumor immune responses and thereby therapeutic effects of RT.
The objective of this proposed work is to harness and reprogram immunosuppressive tumor-associated myeloid
cells (TAMCs), the most abundant immune population in GBM, to amplify the RT-elicited anti-tumor immune
responses. To enable a precise and efficient therapeutic targeting of TAMC, we propose the development of a
bridge-lipid nanoparticle (B-LNP) platform with the ability to actively target the GBM-induced TAMC in-vivo. Our
preliminary data suggest that B-LNP tethers TAMC to GBM through a “bridging” effect and concurrently blocks
the anti-phagocytic effectors used by GBM to escape immune surveillance. This platform also enables TAMC-
targeted delivery of an agonist for stimulator of interferon genes (STING), a key factor in bridging innate and
adaptive anti-tumor immunity, resulting in the tumor displaying a pro-inflammatory phenotype that robustly
stimulates effector T cell infiltration of tumor. In preclinical animal models, our TAMC-targeted reprogramming
promotes brain tumor regression, and increases the anti-tumor activity of RT.
The central hypothesis of this proposal is that nanoparticle therapies that simultaneously activate TAMC
phagocytic activity and interferon pathway signaling will amplify the RT-stimulated anti-tumor immunity against
GBM. We will focus on two different anti-GBM mechanisms of TAMC that our nanoparticle could harness:
phagocytosis of GBM (Aim 1) and activation of effector T cell responses (Aim 2). Lastly, we will determine the
effectiveness of TAMC-targeted therapy in the context of standard of care treatments for GBM (Aim 3). The
feasibility for clinical translation will be thoroughly evaluated using preclinical animal models, including a unique
humanized animal model of GBM, and clinical GBM samples, which will test the effectiveness of a humanized
version of the therapeutics. Overall, our study provides a novel approach to reshape the immunosuppressive
tumor microenvironment responsible for therapy resistance, and promote current standard of care therapies for
GBM.
项目概要/摘要
放射治疗 (RT) 是胶质母细胞瘤 (GBM) 标准治疗的关键组成部分,也是最常见的胶质母细胞瘤 (GBM) 治疗方法。
成人常见且致命的原发性脑恶性肿瘤除了对肿瘤本身有直接的细胞毒性作用外,RT-
引发的抗肿瘤免疫反应最近被认为是治疗结果的关键因素。
这些反应取决于骨髓细胞的功能,骨髓细胞是先天免疫系统的重要组成部分。
然而,在肿瘤微环境中,大部分骨髓区室被编程为
具有免疫抑制作用,会损害抗肿瘤免疫反应,从而损害放疗的治疗效果。
这项工作的目的是利用和重新编程免疫抑制性肿瘤相关骨髓细胞
细胞(TAMC)是 GBM 中最丰富的免疫群体,可放大 RT 引发的抗肿瘤免疫
为了实现 TAMC 的精确有效的治疗靶向,我们建议开发一种
桥脂质纳米颗粒 (B-LNP) 平台能够主动靶向体内 GBM 诱导的 TAMC。
初步数据表明,B-LNP 通过“桥接”效应将 TAMC 与 GBM 联系起来,同时阻断
GBM 用来逃避免疫监视的抗吞噬效应器,该平台还使 TAMC- 成为可能。
靶向递送干扰素基因刺激剂 (STING) 激动剂,干扰素基因是桥接先天和干扰素基因的关键因素
适应性抗肿瘤免疫,导致肿瘤表现出强烈的促炎表型
在临床前动物模型中,我们的 TAMC 靶向重编程可刺激肿瘤的效应 T 细胞浸润。
促进脑肿瘤消退,并增加 RT 的抗肿瘤活性。
该提案的中心假设是同时激活 TAMC 的纳米颗粒疗法
吞噬细胞活性和干扰素途径信号传导将增强 RT 刺激的抗肿瘤免疫力
我们将重点关注我们的纳米颗粒可以利用的 TAMC 的两种不同的抗 GBM 机制:
GBM 的吞噬作用(目标 1)和效应 T 细胞反应的激活(目标 2)。
GBM 护理治疗标准背景下 TAMC 靶向治疗的有效性(目标 3)。
将使用临床前动物模型彻底评估临床转化的可行性,包括独特的
GBM人源化动物模型和临床GBM样本,这将测试人源化GBM的有效性
总的来说,我们的研究提供了一种重塑免疫抑制的新方法。
肿瘤微环境负责治疗抵抗,并促进当前的护理治疗标准
GBM。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Zhang其他文献
Synthesis, antimicrobial activity, and release of tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium dioxide nanofibrous membranes
盐酸四环素负载聚乙烯醇/大豆分离蛋白/二氧化锆纳米纤维膜的合成、抗菌活性及释放
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3
- 作者:
Suwei Jiang;Peng Zhang;Sun Min;Shaotong Jiang - 通讯作者:
Shaotong Jiang
Peng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Zhang', 18)}}的其他基金
Mitochondrial Function and In Vivo Imaging Core
线粒体功能和体内成像核心
- 批准号:
10630738 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Nano-therapeutics Reprogramming of Immunosuppressive Myeloid Cells Potentiate Radiotherapy for Glioblastoma
免疫抑制性骨髓细胞的纳米治疗重编程可增强胶质母细胞瘤的放射治疗
- 批准号:
10517091 - 财政年份:2022
- 资助金额:
$ 35.87万 - 项目类别:
Regulation of Cardiac Fibroblast Function by MicroRNAs
MicroRNA 对心脏成纤维细胞功能的调节
- 批准号:
9298676 - 财政年份:
- 资助金额:
$ 35.87万 - 项目类别:
Regulation of Cardiac Fibroblast Function by MicroRNAs
MicroRNA 对心脏成纤维细胞功能的调节
- 批准号:
8735965 - 财政年份:
- 资助金额:
$ 35.87万 - 项目类别:
Regulation of Cardiac Fibroblast Function by MicroRNAs
MicroRNA 对心脏成纤维细胞功能的调节
- 批准号:
9085126 - 财政年份:
- 资助金额:
$ 35.87万 - 项目类别:
Regulation of Cardiac Fibroblast Function by MicroRNAs
MicroRNA 对心脏成纤维细胞功能的调节
- 批准号:
8854114 - 财政年份:
- 资助金额:
$ 35.87万 - 项目类别:
Regulation of Cardiac Fibroblast Function by MicroRNAs
MicroRNA 对心脏成纤维细胞功能的调节
- 批准号:
8465682 - 财政年份:
- 资助金额:
$ 35.87万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of m6A RNA modifications in AHR-mediated developmental toxicity
m6A RNA 修饰在 AHR 介导的发育毒性中的作用
- 批准号:
10647294 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
N-acetylserotonin alleviates neurotoxicity in alcohol misuse following TBI
N-乙酰血清素可减轻 TBI 后酒精滥用造成的神经毒性
- 批准号:
10591834 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
Exercise Mimetics for Dementia and Alzheimer's Disease
治疗痴呆和阿尔茨海默病的模拟运动
- 批准号:
10586188 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别:
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 35.87万 - 项目类别: