Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
基本信息
- 批准号:10671046
- 负责人:
- 金额:$ 47.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenActomyosinAddressAdolescenceAreaAutomobile DrivingBackBehaviorBiologicalBiologyBioreactorsBirthCell CountCell ProliferationCell SizeCell VolumesCellsCerebral cortexChickCollecting TubeCongenital AbnormalityCongenital DisordersCuesDependenceDevelopmentElasticityEmbryoEmbryonic DevelopmentEngineeringExtracellular MatrixFRAP1 geneFeedbackGenesGeometryGoalsGrowthHandIntestinal ObstructionIntestinal VolvulusIntestinesLengthLinkMeasurementMeasuresMechanicsMediatingMesenteryMicrobial BiofilmsMidgutMolecularMorphogenesisMorphologyOperative Surgical ProceduresOrganOrganismOrganogenesisPathway interactionsPatternPharmacological TreatmentPhenotypePhysicsPlayPrevalenceProcessProliferatingRegenerative MedicineRegulationRoleShapesSignal PathwaySignal TransductionSmall IntestinesSpecific qualifier valueStereotypingStressStretchingStudy modelsSurfaceTestingTissue EngineeringTissuesTubeWorkbody cavitycell behaviorcell typedesigndriving forceexperimental studyfollow-upinsightmathematical modelmechanical drivemechanical forcemortality riskmultidisciplinaryphysical processphysical propertyrepairedstereotypy
项目摘要
PROJECT SUMMARY/ABSTRACT
The broad goal of this work is to understand how molecular cues orchestrate and interact with the physical
forces to drive vertebrate morphogenesis. Specifically, we focus on looping of the small intestine, a process
essential for packing of the lengthy intestine within the abdomen, that when defective leads to devastating
congenital disorders. Loops arise due to buckling of the intestinal tube as it elongates against the constraint of
its attached mesentery. The resulting loop wavelength and curvature can be predicted from a handful of
experimentally measured physical properties, comprising tissue geometry, growth rate, and stiffness. Buckling
has emerged as a core mechanism of shaping various tissues and organs in the embryo. However, the elegant
simplicity of buckling mechanics often betrays the biological complexity that engenders and constrains this
physical process. Indeed, an understanding of buckling morphogenesis that integrates physics with the
underlying molecular cues and dynamic cell behaviors is lacking in most contexts. We recently identified BMP
signaling as a key pathway controlling gut looping. With this pathway in hand, the present application exploits a
well-developed understanding of the associated mechanics to study the molecular and cell biological control of
buckling morphogenesis, as well as how forces generated during development feed back to modulate these
controls. We begin by asking how BMP-dependent acto-myosin activity in the mesentery contributes to tissue
mechanics through manipulation of extracellular matrix organization (Aim 1), focusing on the ability of this
tissue to accommodate large strains (>100%) before stiffening; this behavior, known as constitutive
nonlinearity, is a critical determinant of looping morphology, but its biological basis and morphological function
are often overlooked in development. Next, we build upon the striking observation that BMP establishes
differential growth by restricting mesentery elongation in a proliferation-independent manner (Aim 2), testing
the hypothesis that BMP regulates cell size to set up differential growth, driving buckling. Therefore, Aims 1
and 2 focus on BMP-dependent mechanisms of elastic energy storage within the mesentery. This energy
storage must be precisely balanced with energy dissipation to generate stereotyped looping. To address this,
we examine the control of proliferative growth of the mesentery (Aim 3), focusing on the Hippo signaling
pathway and how forces generated by differential growth may feedback on proliferation. These cross-
disciplinary studies combine retroviral gene misexpression, analyses of cell behavior, force and stiffness
measurements, tensile bioreactor studies, and mathematical modeling. The long term vision is to establish
mechano-molecular rules or design principles of embryogenesis, enabling a true engineering approach to
regenerative medicine, wherein stiffness, stress, and strain can be biologically programmed alongside cell type
specification to instruct the assembly of functional three dimensional tissues and organs.
项目概要/摘要
这项工作的总体目标是了解分子线索如何与物理信号协调并相互作用。
驱动脊椎动物形态发生的力。具体来说,我们关注小肠的循环,这是一个过程
对于将长肠包裹在腹部至关重要,如果有缺陷,就会导致毁灭性的后果
先天性疾病。由于肠管在不受
其附着的肠系膜。由此产生的环路波长和曲率可以从一些数据中预测出来
实验测量的物理特性,包括组织几何形状、生长速率和硬度。屈曲
已成为塑造胚胎中各种组织和器官的核心机制。然而,优雅的
屈曲力学的简单性常常暴露了产生和限制这种现象的生物复杂性
物理过程。事实上,对屈曲形态发生的理解将物理学与
在大多数情况下,缺乏潜在的分子线索和动态细胞行为。我们最近确定了 BMP
信号传导是控制肠道循环的关键途径。有了这条途径,本申请利用了
对相关力学的深入了解,以研究分子和细胞生物控制
屈曲形态发生,以及发育过程中产生的力如何反馈以调节这些
控制。我们首先询问肠系膜中 BMP 依赖性肌动球蛋白活性如何对组织产生影响
通过操纵细胞外基质组织(目标 1)来研究力学,重点关注这种能力
组织在硬化前适应大应变(>100%);这种行为被称为本构性
非线性,是循环形态的关键决定因素,但其生物学基础和形态功能
开发过程中经常被忽视。接下来,我们以 BMP 建立的惊人观察为基础
通过以不依赖增殖的方式限制肠系膜伸长来实现差异生长(目标 2),测试
BMP 调节细胞大小以建立差异生长、驱动屈曲的假设。因此,目标 1
2 重点关注肠系膜内弹性能量储存的 BMP 依赖性机制。这种能量
存储必须与能量耗散精确平衡,以产生定型循环。为了解决这个问题,
我们检查肠系膜增殖生长的控制(目标 3),重点关注 Hippo 信号传导
途径以及差异生长产生的力量如何反馈增殖。这些跨
学科研究结合了逆转录病毒基因错误表达、细胞行为、力和刚度分析
测量、拉伸生物反应器研究和数学建模。长期愿景是建立
胚胎发生的机械分子规则或设计原则,使真正的工程方法成为可能
再生医学,其中硬度、应力和应变可以与细胞类型一起进行生物编程
指导功能性三维组织和器官组装的规范。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nandan L Nerurkar其他文献
Nandan L Nerurkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nandan L Nerurkar', 18)}}的其他基金
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 47.39万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 47.39万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10898139 - 财政年份:2022
- 资助金额:
$ 47.39万 - 项目类别:
Investigation of a neuromesendodermal progenitor population in the posterior avian endoderm
禽类后内胚层神经中内胚层祖细胞群的研究
- 批准号:
10725031 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别:
Investigation of a neuromesendodermal progenitor population in the posterior avian endoderm
禽类后内胚层神经中内胚层祖细胞群的研究
- 批准号:
10456910 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别:
Investigation of a neuromesendodermal progenitor population in the posterior avian endoderm
禽类后内胚层神经中内胚层祖细胞群的研究
- 批准号:
10276499 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别:
Investigation of a neuromesendodermal progenitor population in the posterior avian endoderm
禽类后内胚层神经中内胚层祖细胞群的研究
- 批准号:
10631710 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别:
Investigation of a neuromesendodermal progenitor population in the posterior avian endoderm
禽类后内胚层神经中内胚层祖细胞群的研究
- 批准号:
10621879 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别:
Morphogenesis and patterning of the vertebrate gut tube.
脊椎动物肠管的形态发生和模式。
- 批准号:
9978856 - 财政年份:2019
- 资助金额:
$ 47.39万 - 项目类别:
Morphogenesis and patterning of the vertebrate gut tube.
脊椎动物肠管的形态发生和模式。
- 批准号:
9808701 - 财政年份:2019
- 资助金额:
$ 47.39万 - 项目类别:
相似国自然基金
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具有主动摆动腹部的仿蝴蝶扑翼大机动飞行机理及样机关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 47.39万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10521605 - 财政年份:2022
- 资助金额:
$ 47.39万 - 项目类别:
Molecular control of mechanical forces driving buckling morphogenesis of the small intestine
驱动小肠屈曲形态发生的机械力的分子控制
- 批准号:
10898139 - 财政年份:2022
- 资助金额:
$ 47.39万 - 项目类别:
Linking cell forces to organ-scale morphogenesis of the small intestine
将细胞力与小肠器官尺度的形态发生联系起来
- 批准号:
10320734 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别:
Linking cell forces to organ-scale morphogenesis of the small intestine
将细胞力与小肠器官尺度的形态发生联系起来
- 批准号:
10617174 - 财政年份:2021
- 资助金额:
$ 47.39万 - 项目类别: