Macrophage immunometabolism controls septic shock
巨噬细胞免疫代谢控制感染性休克
基本信息
- 批准号:10658162
- 负责人:
- 金额:$ 63.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-22 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AKT inhibitionAffectAnti-Inflammatory AgentsBacteremiaBindingBiochemistryCellsCessation of lifeComplexCountryDataDevelopmentEZH2 geneEndotoxic ShockEnvironmentEpigenetic ProcessEquilibriumExtracellular SpaceFDA approvedGenesGenetic TranscriptionGoalsGram-Negative BacteriaHistone H3HomeostasisHumanImmuneImmune responseImmune systemIn VitroInflammasomeInflammationInflammatoryInjuryInnate Immune SystemInterleukin-1 betaInterleukin-10InterventionKnockout MiceLigandsLipopolysaccharidesLysineMacrophageMediatingMetabolicMetabolic PathwayMetabolismMethionineMitochondriaModificationMolecularMusPathologyPatternPattern RecognitionPattern recognition receptorPhagocytesPharmaceutical PreparationsPhasePhospholipidsPhosphorylcholinePlayProcessProductionProto-Oncogene Proteins c-aktRecoveryRoleSepsisSeptic ShockSignal TransductionSiteSolidSterilitySyndromeTestingTherapeuticTherapeutic InterventionTransgenic OrganismsWorkconditional knockoutcytokineempowermentenzyme activityepigenomicsforginghistone methylationimmunoregulationin vivoin vivo evaluationinnovationmetabolic profilemetabolomicsmicrobialmouse modelnovelnovel therapeutic interventionoxidationoxidized phosphatidyl cholinepathogenpolymicrobial sepsispreventtherapeutic targettherapeutically effectivetissue injury
项目摘要
Inflammation evolved to lead to recovery from sterile or microbial injuries. The induction of the inflammatory process not only activates the immune cells, but also alters their metabolism and thus forge the immune response. Accumulating evidence shows that a proper inflammatory process requires the coincident recognition by pattern recognition receptors (PRRs) of exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). We recently demonstrated that the coincident recognition of lipopolysaccharide (LPS), the major component of Gram-negative bacteria, and host-derived oxidized phospholipids known as oxPAPC (a class of DAMPs) leads to the formation of phagocytes characterized by a unique metabolic profile that increases the production of interleukin (IL)-1β, a potent pro-inflammatory cytokine. Whether, and how, the simultaneous encounter of LPS and oxPAPC alters other inflammatory activities of phagocytes remains largely unknown. Based on new compelling data, here we hypothesize that the coincident recognition of LPS and oxPAPC alters key metabolic checkpoints to drive hyper-inflammation. Also, that these changes can be harnessed against septic shock. Sepsis is a complex inflammatory syndrome characterized by a hyper-inflammatory phase called septic shock. Although it was previously proposed that oxPAPC protects against the hyperinflammatory phase of sepsis by inhibiting the capacity of LPS to signal, our new unpublished data show instead that oxPAPC production follows LPS or bacterial encounter in vivo and that oxPAPC increases inflammation and lethality in mouse models of sepsis. Notably, we found that, to exert its functions, oxPAPC directly interacts with, and inhibits, AKT. AKT is a central metabolic checkpoint that regulates the metabolism of phagocytes and their inflammatory activity. AKT inhibition by oxPAPC prevents the production of IL-10. IL-10 is a pluripotent immunoregulatory cytokine indispensable for maintaining immune homeostasis and restricting inflammation during sepsis. Mechanistically, oxPAPC-dependent inhibition of AKT potentiates the methionine cycle and favors the trimethylation of the histone H3, thus switching off IL-10 transcription. Supported by our new solid data, we will employ biochemistry, transcriptional and epigenetic analyses, as well as metabolomics in vitro to further dissect the signaling cascade initiated by oxPAPC during LPS encounter. By using new transgenic or conditional knock-out mice, as well as commercially available drugs, we will test in vivo the possibility to target the newly identified metabolic pathways regulated by oxPAPC to protect against sepsis. Altogether we will characterize the molecular components that mediate host-derived inflammatory ligand-dependent immunometabolic functions. Our study will offer potential therapeutic targets for modulating immune system activation and sepsis, a devastating inflammatory syndrome that is widespread in western countries.
炎症的进化导致无菌或微生物损伤的恢复,炎症过程的诱导不仅会激活免疫细胞,而且会改变它们的新陈代谢,从而形成免疫反应。越来越多的证据表明,适当的炎症过程需要免疫细胞的一致识别。我们最近证明了外源病原体相关分子模式(PAMP)和内源损伤相关分子模式(DAMP)的模式识别受体(PRR)的一致识别。脂多糖 (LPS) 是革兰氏阴性细菌的主要成分,而宿主衍生的氧化磷脂(称为 oxPAPC)(一类 DAMP)会导致吞噬细胞的形成,其特征是具有独特的代谢特征,可增加白细胞介素 (IL) 的产生-1β,一种有效的促炎细胞因子。LPS 和 oxPAPC 的同时相遇是否以及如何改变吞噬细胞的其他炎症活动仍然很大程度上未知。数据显示,LPS 和 oxPAPC 的同时识别会改变关键的代谢检查点以驱动过度炎症,而且,这些变化可以用来对抗感染性休克,这是一种复杂的炎症综合征,其特征是称为脓毒症的高炎症阶段。尽管之前有人提出 oxPAPC 通过抑制 LPS 发出信号的能力来预防脓毒症的高炎症阶段,但我们新的未发表的数据表明 oxPAPC 的产生遵循 LPS。值得注意的是,为了发挥其功能,oxPAPC 直接与 AKT 相互作用并抑制 AKT 的代谢。 oxPAPC 抑制吞噬细胞及其炎症活性可阻止 IL-10 的产生,IL-10 是维持免疫系统所必需的多能免疫调节细胞因子。从机制上讲,oxPAPC 依赖性的 AKT 抑制会增强蛋氨酸循环并有利于组蛋白 H3 的三甲基化,从而关闭 IL-10 转录。在我们新的可靠数据的支持下,我们将采用生物化学、转录和通过使用新的转基因技术,进行表观遗传学分析以及体外代谢组学,以进一步剖析 oxPAPC 在 LPS 遭遇过程中引发的信号级联反应。或条件性基因敲除小鼠,以及市售药物,我们将在体内测试针对新发现的由 oxPAPC 调节的代谢途径以预防脓毒症的可能性。我们的研究将为调节免疫系统激活和败血症(一种在西方国家普遍存在的破坏性炎症综合征)提供潜在的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Zanoni其他文献
Ivan Zanoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Zanoni', 18)}}的其他基金
Development of a novel adjuvant strategy enabled by modulation of the physical properties of fungal mannans
通过调节真菌甘露聚糖的物理特性开发新型佐剂策略
- 批准号:
10490881 - 财政年份:2021
- 资助金额:
$ 63.15万 - 项目类别:
Development of a novel adjuvant strategy enabled by modulation of the physical properties of fungal mannans
通过调节真菌甘露聚糖的物理特性开发新型佐剂策略
- 批准号:
10687182 - 财政年份:2021
- 资助金额:
$ 63.15万 - 项目类别:
Development of a novel adjuvant strategy enabled by modulation of the physical properties of fungal mannans
通过调节真菌甘露聚糖的物理特性开发新型佐剂策略
- 批准号:
10338399 - 财政年份:2021
- 资助金额:
$ 63.15万 - 项目类别:
Innate control of the inflammatory process during fungal infections
真菌感染期间炎症过程的先天控制
- 批准号:
9232989 - 财政年份:2016
- 资助金额:
$ 63.15万 - 项目类别:
Innate control of the inflammatory process during fungal infections
真菌感染期间炎症过程的先天控制
- 批准号:
9122779 - 财政年份:2016
- 资助金额:
$ 63.15万 - 项目类别:
Innate control of the inflammatory process during fungal infections
真菌感染期间炎症过程的先天控制
- 批准号:
10434924 - 财政年份:2016
- 资助金额:
$ 63.15万 - 项目类别:
Innate control of the inflammatory process during fungal infections
真菌感染期间炎症过程的先天控制
- 批准号:
10293993 - 财政年份:2016
- 资助金额:
$ 63.15万 - 项目类别:
Innate control of the inflammatory process during fungal infections
真菌感染期间炎症过程的先天控制
- 批准号:
10641775 - 财政年份:2016
- 资助金额:
$ 63.15万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10665664 - 财政年份:2022
- 资助金额:
$ 63.15万 - 项目类别:
TREM2 Genotype-Informed Drug Repurposing and Combination Therapy Design for Alzheimers Disease
基于 TREM2 基因型的阿尔茨海默病药物再利用和联合治疗设计
- 批准号:
10418459 - 财政年份:2022
- 资助金额:
$ 63.15万 - 项目类别:
Targeting PI3K/Akt/mTOR for the management of psoriasis
靶向 PI3K/Akt/mTOR 治疗银屑病
- 批准号:
9030172 - 财政年份:2010
- 资助金额:
$ 63.15万 - 项目类别:
Targeting PI3K/Akt/mTOR for the management of psoriasis
靶向 PI3K/Akt/mTOR 治疗银屑病
- 批准号:
9144314 - 财政年份:2010
- 资助金额:
$ 63.15万 - 项目类别: