Targeting Clostridioides difficile with microbiome-sparing, resistant-proof anti-toxins
使用保留微生物组、抗耐药性的抗毒素来靶向艰难梭菌
基本信息
- 批准号:10656160
- 负责人:
- 金额:$ 66.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAnimal ExperimentsAntibiotic ResistanceAntibiotic TherapyAntibioticsApoptosisBacterial ToxinsBindingBiological AssayCatalytic DomainCeftriaxoneCellsCenters for Disease Control and Prevention (U.S.)Cessation of lifeChemicalsClinicalClinical TrialsClostridiumClostridium difficileColitisComplexCrystallographyCytoskeletonDevelopmentDiseaseDrug DesignDrug resistanceElectrostaticsEnvironmentEpithelial CellsEquilibriumEvolutionExcretory functionFDA approvedFatal OutcomeGTP-Binding ProteinsGlucoseGlucosyltransferaseGlucosyltransferasesGuidelinesHealth Care CostsHospitalsHumanHydrolysisHypotensionIleusImmunityInfectionInfection preventionIsotopesKineticsKnowledgeLactamaseLeadLifeMapsMedicalMegacolonMethodsMicrofilamentsModelingMolecularMonoclonal Antibody TherapyMorbidity - disease rateNorth AmericaOralOrganismPathologyPathway interactionsPatientsPatternPharmaceutical PreparationsPopulationProcessProductionProliferatingProteinsPseudomembranous ColitisReactionRecommendationRecoveryReportingReproduction sporesResistanceRoentgen RaysShockStructureTechnologyTestingThermodynamicsThreonineTissuesToxic effectToxinTransferaseUnited States National Institutes of HealthUridine Diphosphate SugarsVaccinesVancomycinVirulence FactorsWorld Health Organizationanalogantitoxincdc42 GTP-Binding Proteincomputational chemistrycytotoxicitydesignfecal transplantationgastrointestinal epitheliumglycosylationglycosyltransferasegut microbiomegut microbiotahealthcare-associated infectionsholotoxinsinhibitorinnovationinsightmicrobialmicrobiomemortalitymouse modelneutralizing antibodynoveloral infectionpathogenpathogenic bacteriaphase II trialpreservationpressurepreventprogramsquantum chemistryrecurrent infectionrhoscreeningsmall moleculesymptom treatment
项目摘要
Abstract: Human gut infections by Clostridioides (Clostridium) difficile (here, C.diff.) are the most lethal urgent
threat in the 2019 CDC Antibiotic Resistance Threats Report. Excess healthcare costs from these infections have
been estimated to be over $5 billion annually. Antibiotic resistance has elicited an insightful RFA RA18-725,
`Generating new insights and mechanistic understanding of antibiotic resistance'. C.diff. infections (CDI) typically
arise following treatment of other clinical disorders with antibiotics. Antibiotic therapy disrupts normal gut
microbiota, allowing C.diff. to proliferate and to repopulate the gut following treatment. Additional antibiotic therapy
to treat CDI prevents return of normal gut microbiota, leading to recurrent infections in over 20% of patients. C.diff.
has acquired resistance to several common antibiotics, compounding its therapy. Recent clinical guidelines (2018)
for C.diff. infections are oral vancomycin for patients in shock, hypotension, ileus or megacolon. Fecal transplant
is recommended for nonresponsive infections following vancomycin treatment. mAb therapies have been FDA-
approved, but are not recommended. Despite these therapies, C. difficile causes an estimated 224,000 infections
and 13,000 deaths per year (CDC in 2017). Gut epithelial cell cytotoxicity results from C.diff. production of
secreted toxins, primarily TcdA and TcdB (Tcds). Tcds are processed in gut cells to form active UDP-glucosyl
transferases that glucosylate cytoskeletal-regulating Rho, Rac and Cdc42 GTP-binding proteins on specific
threonines. Loss of cytoskeletal integrity causes severe colitis and can have a fatal outcome.
Anti-toxin immunity is a historic approach to prevent host damage from circulating bacterial toxins. We
propose that small molecule, tight-binding inhibitors targeting C.diff. Tcds can prevent the morbidity and mortality
from gut toxins in C.diff. infections. Our transition state analog approach uses kinetic isotope effects and quantum
chemistry to solve transition state structures of Tcds. Solving the first transition state structures of G-protein
glucosyltransferases, and developing the first transition state analog of any UDP-sugar transferase is innovative.
Electrostatic potential models of Tcd transition states will guide the design and synthesis of transition state
analogs. Lead transition state analog candidates will be elaborated by cycles of crystallography and chemical
design. Candidate compounds and crystal structures of Tcd complexes have been obtained in preliminary studies.
Inhibitors will be characterized against Tcds in human cells and in mouse models.
Agents to prevent tissue damage from C.diff. infections, without disruption of the gut microbiome or
pressure for microbial resistance have important medical relevance. Inhibition of Tcds in gut epithelial cells places
no selective pressure for antibiotic or anti-toxin resistance on C.diff. or on the gut microbiome, while protecting the
gut by neutralizing Tcds. Mechanistically, this approach is innovative in recapitulating vaccine-based antibody
neutralization of toxins using the powerful approach of transition state analogs.
摘要:艰难梭菌 (Clostridium) difficile(此处为 C.diff.)引起的人类肠道感染是最致命的紧急疾病
2019 年 CDC 抗生素耐药性威胁报告中的威胁。这些感染造成的额外医疗费用已经
据估计每年超过 50 亿美元。抗生素耐药性引发了富有洞察力的 RFA RA18-725,
“产生对抗生素耐药性的新见解和机制理解”。 C.差异。感染(CDI)通常
用抗生素治疗其他临床疾病后出现。抗生素治疗会破坏正常肠道
微生物群,允许艰难梭菌。治疗后增殖并重新填充肠道。额外的抗生素治疗
治疗 CDI 会阻碍正常肠道微生物群的恢复,导致超过 20% 的患者出现复发性感染。 C.差异。
对几种常见抗生素产生了耐药性,使其治疗更加复杂。最近的临床指南(2018)
对于 C.diff。感染休克、低血压、肠梗阻或巨结肠的患者口服万古霉素。粪便移植
建议用于万古霉素治疗后无反应的感染。 mAb 疗法已获得 FDA 批准
批准,但不推荐。尽管有这些疗法,艰难梭菌仍导致估计 224,000 例感染
每年有 13,000 人死亡(CDC,2017 年)。艰难梭菌对肠上皮细胞具有细胞毒性。生产
分泌毒素,主要是 TcdA 和 TcdB (Tcds)。 Tcd 在肠道细胞中加工形成活性 UDP-葡萄糖基
转移酶可对特定的细胞骨架调节 Rho、Rac 和 Cdc42 GTP 结合蛋白进行糖基化
苏氨酸。细胞骨架完整性的丧失会导致严重的结肠炎,并可能产生致命的结果。
抗毒素免疫是防止循环细菌毒素对宿主造成损害的历史性方法。我们
提出针对艰难梭菌的小分子紧密结合抑制剂。 TCD 可以预防发病率和死亡率
来自艰难梭菌的肠道毒素。感染。我们的过渡态模拟方法使用动力学同位素效应和量子
化学来解决 Tcd 的过渡态结构。解析 G 蛋白的第一过渡态结构
葡萄糖基转移酶,并开发任何 UDP 糖转移酶的第一个过渡态类似物是创新的。
Tcd过渡态静电势模型将指导过渡态的设计与合成
类似物。先导过渡态类似物候选物将通过晶体学和化学循环来详细阐述
设计。初步研究已获得Tcd配合物的候选化合物和晶体结构。
抑制剂将在人类细胞和小鼠模型中针对 Tcd 进行表征。
防止艰难梭菌组织损伤的药物。感染,不破坏肠道微生物组或
微生物耐药性的压力具有重要的医学意义。 Tcds 在肠道上皮细胞中的抑制作用
对艰难梭菌没有抗生素或抗毒素抗性的选择压力。或肠道微生物组,同时保护
通过中和 Tcd 来肠道。从机制上讲,这种方法在重现基于疫苗的抗体方面是创新的
使用过渡态类似物的强大方法中和毒素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vern L. Schramm其他文献
Analogues de déazapurine de 1'-aza-l-nucléosides
1-氮杂-l-核苷 déazapurine 类似物
- DOI:
10.1634/theoncologist.2011-0315 - 发表时间:
2006-12-15 - 期刊:
- 影响因子:0
- 作者:
R. Furneaux;Peter C. Tyler;Gary B. Evans;Vern L. Schramm;Keith Clinch - 通讯作者:
Keith Clinch
Structure d'état de transition d'une 5'-méthylthioadénosine phosphorylase humaine
5-甲基硫腺苷磷酸化酶人的结构
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Vern L. Schramm - 通讯作者:
Vern L. Schramm
Méthodes de traitement de maladies en utilisant des inhibiteurs de nucléoside phosphorylases et de nucléosidases
使用核苷磷酸化酶和核苷酶抑制剂治疗疾病的方法
- DOI:
10.1016/j.tcsw.2019.100024 - 发表时间:
2007-02-23 - 期刊:
- 影响因子:0
- 作者:
R. Furneaux;Peter C. Tyler;Gary B. Evans;Vern L. Schramm - 通讯作者:
Vern L. Schramm
Vern L. Schramm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vern L. Schramm', 18)}}的其他基金
Targeting Clostridioides difficile with microbiome-sparing, resistant-proof anti-toxins
使用保留微生物组、抗耐药性的抗毒素来靶向艰难梭菌
- 批准号:
10115406 - 财政年份:2021
- 资助金额:
$ 66.87万 - 项目类别:
Targeting Clostridioides difficile with microbiome-sparing, resistant-proof anti-toxins
使用保留微生物组、抗耐药性的抗毒素来靶向艰难梭菌
- 批准号:
10376809 - 财政年份:2021
- 资助金额:
$ 66.87万 - 项目类别:
Methylthioadenosine Phosphorylase and AdoMet Synthetase in Cancer
癌症中的甲硫腺苷磷酸化酶和 AdoMet 合成酶
- 批准号:
8697334 - 财政年份:2014
- 资助金额:
$ 66.87万 - 项目类别:
Methylthioadenosine Phosphorylase and AdoMet Synthetase in Cancer
癌症中的甲硫腺苷磷酸化酶和 AdoMet 合成酶
- 批准号:
9052718 - 财政年份:2014
- 资助金额:
$ 66.87万 - 项目类别:
Methylthioadenosine Phosphorylase and AdoMet Synthetase in Cancer
癌症中的甲硫腺苷磷酸化酶和 AdoMet 合成酶
- 批准号:
8847658 - 财政年份:2014
- 资助金额:
$ 66.87万 - 项目类别:
Transition State Analogues as Modulators of DNA Methylation
作为 DNA 甲基化调节剂的过渡态类似物
- 批准号:
8299145 - 财政年份:2008
- 资助金额:
$ 66.87万 - 项目类别:
Transition State Analogues as Modulators of DNA Methylation
作为 DNA 甲基化调节剂的过渡态类似物
- 批准号:
7686190 - 财政年份:2008
- 资助金额:
$ 66.87万 - 项目类别:
Transition State Analogues as Modulators of DNA Methylation
作为 DNA 甲基化调节剂的过渡态类似物
- 批准号:
8109261 - 财政年份:2008
- 资助金额:
$ 66.87万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Humanized anti-CXCL1 antibody for bladder cancer therapeutics
用于膀胱癌治疗的人源化抗 CXCL1 抗体
- 批准号:
10290237 - 财政年份:2021
- 资助金额:
$ 66.87万 - 项目类别:
Humanized anti-CXCL1 antibody for bladder cancer therapeutics
用于膀胱癌治疗的人源化抗 CXCL1 抗体
- 批准号:
10454422 - 财政年份:2021
- 资助金额:
$ 66.87万 - 项目类别:
Manipulating & imaging nutrient micro-milieux as B cells effect humoral immunity
操纵
- 批准号:
10529278 - 财政年份:2019
- 资助金额:
$ 66.87万 - 项目类别:
Resuscitation Strategies for Achieving Thrombo-inflammatory Homeostasis
实现血栓炎症稳态的复苏策略
- 批准号:
10397402 - 财政年份:2019
- 资助金额:
$ 66.87万 - 项目类别: