Tensor decomposition methods for multi-omics immunology data analysis
用于多组学免疫学数据分析的张量分解方法
基本信息
- 批准号:10655726
- 负责人:
- 金额:$ 24.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-07 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgebraAlgorithmsAreaBiologicalClinicalCommunitiesComplexDataData AnalysesData ReportingData SetDevelopmentDimensionsFaceGene ExpressionGenesGoalsImmuneImmunologyInfectionJointsMathematicsMethodologyMethodsMultiomic DataNational Institute of Allergy and Infectious DiseaseOutcomePathogenicityPatternPlatelet ActivationPrincipal Component AnalysisProcessProteomicsRecoveryResearchResearch DesignResearch PersonnelResolutionRiskSamplingSourceStructureTechnologyTestingTimeTissuesVaccinationVariantage groupalgorithm developmentcomplex datadata complexitydata integrationdesignhigh dimensionalityimprovedindexingmetabolomicsmultiple omicsnovelnovel strategiespatient subsetspreventprogramsresponsetooltranscriptome sequencingtwo-dimensionalusabilityvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Immune profiling studies continue to increase in complexity, with multi-omic designs that encompass additional
dimensions such as time, tissue, and spatial profiling becoming more commonplace. Unsupervised
dimensionality reduction has been a widely used and valuable approach for extracting and understanding the
major sources of variation in previous studies, but popular methods such as Principal Components Analysis
(PCA) and Non-negative Matrix Factorization (NMF) cannot support these increases in data complexity, nor can
existing multi-omic embedding methods, which are designed for static datasets. It is critical that algorithms be
developed that incorporate the complex data structures inherent in state-of-the-art immune profiling multi-omics
studies that include additional dimensions (e.g., time or space) in order to capture multi-resolution components
of vaccination and infection.
The goal of this project is to develop algorithms based on tensor frameworks - which are extensions of matrices
beyond two dimensions. Tensors naturally represent complex data without flattening on any variable, and tensor
decompositions can identify multi-index patterns of variation, analogous to PCA or NMF in higher dimensions.
Tensor decomposition methodology is an active area of research in the applied mathematics community, but is
under-developed for application to immune profiling data, and current methods face critical challenges that
prevent them from being directly applied in immunology studies. This project brings together computational
immunology and applied mathematics researchers to strengthen and develop novel approaches of tensor
decomposition in order to make them beneficial to the immunology community. Aim 1 will reframe a tensor
decomposition problem into a regularized NMF problem, thereby allowing tools developed for matrix analysis to
be used on tensor data, and furthermore will extend the new algorithm to handle multi-omics data that has a
temporal or spatial component. Aim 2 will directly improve tensor decomposition approaches by developing
novel metrics for tensor decomposition quality, and by extending a multi-omic embedding method into the tensor
space using a novel tensor-algebra. The resulting algorithm will be able to generate components associated
with data that can include both multi-omic and multi-dimensional (e.g. time, space, tissue, etc.) designs. These
components can be analyzed for association with clinical features and outcomes, allowing for discovery of novel
biological mechanisms. The proposed project will result in a suite of complementary algorithms that will aid the
immunology community in understanding complex pathogenic and treatment/vaccination processes using the
increasingly complex study designs that are becoming common to immune profiling studies.
项目概要/摘要
免疫分析研究的复杂性不断增加,多组学设计涵盖了额外的
时间、组织和空间分析等维度变得更加普遍。无监督
降维已成为一种广泛使用且有价值的方法来提取和理解
先前研究中变异的主要来源,但流行的方法(例如主成分分析)
(PCA) 和非负矩阵分解 (NMF) 无法支持数据复杂性的增加,也无法支持
现有的多组学嵌入方法是为静态数据集设计的。算法至关重要
开发融合了最先进的免疫分析多组学固有的复杂数据结构
包括额外维度(例如时间或空间)以捕获多分辨率成分的研究
疫苗接种和感染。
该项目的目标是开发基于张量框架的算法 - 张量框架是矩阵的扩展
超越二维。张量自然地表示复杂的数据,无需对任何变量进行扁平化,并且张量
分解可以识别多指标变化模式,类似于更高维度的 PCA 或 NMF。
张量分解方法是应用数学界的一个活跃的研究领域,但
免疫分析数据的应用尚不成熟,当前的方法面临着严峻的挑战
阻止它们直接应用于免疫学研究。该项目汇集了计算
免疫学和应用数学研究人员加强和开发张量的新方法
分解以使它们对免疫学界有益。目标 1 将重构张量
将问题分解为正则化 NMF 问题,从而允许为矩阵分析开发的工具
用于张量数据,此外还将扩展新算法以处理具有
时间或空间成分。目标 2 将通过开发直接改进张量分解方法
张量分解质量的新颖指标,并将多组学嵌入方法扩展到张量
使用新颖的张量代数的空间。由此产生的算法将能够生成相关的组件
数据可以包括多组学和多维(例如时间、空间、组织等)设计。这些
可以分析成分与临床特征和结果的关联,从而发现新的
生物学机制。拟议的项目将产生一套补充算法,这将有助于
免疫学界使用以下方法了解复杂的致病和治疗/疫苗接种过程
日益复杂的研究设计在免疫分析研究中变得越来越常见。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven H. Kleinstein其他文献
Steven H. Kleinstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven H. Kleinstein', 18)}}的其他基金
Semantic Integration of ImmPort and the Linked Data Cloud for Systems Vaccinology
ImmPort 和系统疫苗学关联数据云的语义集成
- 批准号:
9364451 - 财政年份:2017
- 资助金额:
$ 24.78万 - 项目类别:
Computational tools for the analysis of high-throughput immunoglobulin sequencing
用于分析高通量免疫球蛋白测序的计算工具
- 批准号:
8631840 - 财政年份:2014
- 资助金额:
$ 24.78万 - 项目类别:
COMPUTATIONAL TOOLS FOR THE ANALYSIS OF HIGH-THROUGHPUT IMMUNOGLOBULIN SEQUENCING EXPERIMENTS
用于分析高通量免疫球蛋白测序实验的计算工具
- 批准号:
10243273 - 财政年份:2014
- 资助金额:
$ 24.78万 - 项目类别:
COMPUTATIONAL TOOLS FOR THE ANALYSIS OF HIGH-THROUGHPUT IMMUNOGLOBULIN SEQUENCING EXPERIMENTS
用于分析高通量免疫球蛋白测序实验的计算工具
- 批准号:
10322108 - 财政年份:2014
- 资助金额:
$ 24.78万 - 项目类别:
相似国自然基金
典型Sponge类认证加密算法的代数攻击方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高指标微分代数方程系统的指标约简与高精度数值算法研究
- 批准号:12201144
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于符号计算的代数微分和差分方程的理论及算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于代数结构和智能算法的密码函数设计与分析
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低维半代数集保拓扑逼近算法及复杂度分析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening: Aiming toward total in silico design of antibodies
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性:旨在实现抗体的全面计算机设计
- 批准号:
10603473 - 财政年份:2020
- 资助金额:
$ 24.78万 - 项目类别: