Mechanisms of Kidney Injury in COVID-19
COVID-19 肾损伤的机制
基本信息
- 批准号:10700050
- 负责人:
- 金额:$ 40.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAPOL1 geneAcute Renal Failure with Renal Papillary NecrosisAddressAffectAllelesAnatomyAnimal ModelAutopsyBacterial Artificial ChromosomesBiological ModelsBlack raceCOVID-19COVID-19 pandemicCOVID-19 patientCellsCessation of lifeClinical DataCollaborationsDataDevelopmentDiagnosisDiagnosticDiseaseElectron MicroscopyFoundationsFunctional disorderFutureGenomicsGenotypeGoalsGuide preventionHIV InfectionsHispanicHumanImmunohistochemistryImmunologyIn Situ HybridizationIn VitroIndividualInfectionInflammatoryInjuryInjury to KidneyInterferon Type IIKidneyKidney DiseasesLaboratoriesLung infectionsMediatingModelingMolecularMorphologyMusOrganoidsPathogenesisPathologistPathologyPatientsPhenotypePhysiologicalPopulation HeterogeneityPre-Clinical ModelPreventionPrognosisProteomicsReagentRenal functionResearchResearch PersonnelSARS-CoV-2 infectionSliceSourceSpecimenSystemTherapeutic InterventionTissuesTransgenic MiceViralVirusVirus Diseasesbiobankcell typecytokinecytotoxicitydefined contributionexperimental studyhigh riskhuman tissuein vitro Modelin vivoinduced pluripotent stem cellkidney biopsykidney cellkidney infectionmortality riskmouse geneticsmouse modelpreventresponserisk varianttranscriptomic profilingtranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
The SARS-CoV-2 pandemic has infected millions of individuals in the US and caused hundreds of thousands of
deaths. We and others have shown that COVID-19 is also strongly associated with devastating and usually rare
kidney pathophysiologies, such as collapsing glomerulopathy (CG). As in HIV infection, CG in COVID-19 patients
mostly affects individuals with high-risk APOL1 genotypes, which are more prevalent in Black and some Hispanic
patients. To guide treatment, there is a pressing need to understand whether COVID-19 nephropathy is due to
direct viral infection or indirect mechanisms, such as cytokines or physiologic disturbances that emanate from
the lung infection. Addressing this need has been hampered by poorly validated reagents, and misinterpretation
of immunohistochemistry and electron microscopy findings. We have assembled a multi-investigator team to
uncover the mechanisms of kidney injury due to SARS-CoV-2 infection. We will bring expert and complementary
expertise in anatomic, autopsy and renal pathology, integrative genomic analysis, human kidney organoid
systems and mouse immunology. We will use primary human tissue specimens, in vitro human kidney
model systems and a new mouse model of COVID-19 to define direct and indirect mechanisms of SARS-
CoV-2 associated kidney injury in three specific aims. Aim 1: Using kidney tissue specimens from COVID-
19 patients and controls, we will define the spectrum of kidney manifestations in individuals that have been
infected with SARS-CoV-2. We will use immunohistochemistry, in situ hybridization, and proteomics to define
SARS-CoV-2 kidney infection in a diverse population. In patients with COVID-19 associated CG, we will define
molecular changes of this disease using spatial transcriptomic profiling, and the association with APOL1 status.
These studies will define the relationship of SARS-CoV-2 infection to COVID-19 associated kidney diseases and
uncover molecular mechanisms that underlie direct and indirect modes of kidney injury. Aim 2: Human kidney
organoids provide a physiologically relevant model of SARS-CoV-2 infection. We will define cellular, morphologic
and molecular hallmarks of SARS-CoV-2 infection in human kidney organoids and organotypic tissue slices.
Using established iPSC cells with APOL1 high-risk alleles, we will determine the impact of APOL1 genotype on
infection and inflammatory cytokine induced kidney injury. These studies will establish which kidney cells are
capable of being infected by SARS-CoV-2, and kidney cell type specific molecular changes induced by viral
infection and inflammatory cytokines. Aim 3: We will use a recently developed mouse adapted SARS-CoV-2
virus to determine the effect of SARS CoV-2 infection on kidney function in vivo. Using newly described BAC-
transgenic mice that express human APOL1 G0, G1 or G2 alleles, we will define the influence of human APOL1
high-risk alleles on kidney function and kidney injury during SARS-CoV-2 infection. The successful development
of these models will establish a paradigm for investigating viral infection associated kidney injury and leverage
mouse genetics to define mechanisms of kidney injury and CG, and well as future therapeutic interventions.
项目概要/摘要
SARS-CoV-2 大流行已感染美国数百万人,并导致数十万人死亡
死亡人数。我们和其他人已经证明,COVID-19 还与破坏性且通常罕见的疾病密切相关。
肾脏病理生理学,例如塌陷性肾小球病(CG)。与 HIV 感染一样,COVID-19 患者中的 CG
主要影响具有高风险 APOL1 基因型的个体,该基因型在黑人和一些西班牙裔美国人中更为普遍
患者。为了指导治疗,迫切需要了解 COVID-19 肾病是否是由于
直接病毒感染或间接机制,例如细胞因子或源自病毒的生理紊乱
肺部感染。验证不佳的试剂和误解阻碍了解决这一需求
免疫组织化学和电子显微镜检查结果。我们组建了一个由多位研究者组成的团队
揭示 SARS-CoV-2 感染引起的肾损伤机制。我们将带来专家和互补
解剖学、尸检和肾脏病理学、综合基因组分析、人类肾脏类器官方面的专业知识
系统和小鼠免疫学。我们将使用原代人体组织标本,体外人肾
模型系统和新的 COVID-19 小鼠模型,用于定义 SARS 的直接和间接机制
CoV-2 与肾损伤相关的三个具体目标。目标 1:使用来自新冠肺炎的肾组织标本
19 名患者和对照者,我们将定义接受过治疗的个体的肾脏表现范围
感染了 SARS-CoV-2。我们将使用免疫组织化学、原位杂交和蛋白质组学来定义
不同人群中的 SARS-CoV-2 肾脏感染。对于患有 COVID-19 相关 CG 的患者,我们将定义
使用空间转录组分析分析该疾病的分子变化,以及与 APOL1 状态的关联。
这些研究将明确 SARS-CoV-2 感染与 COVID-19 相关肾脏疾病的关系以及
揭示直接和间接肾损伤模式背后的分子机制。目标 2:人体肾脏
类器官提供了 SARS-CoV-2 感染的生理相关模型。我们将定义细胞、形态学
人类肾脏类器官和器官组织切片中 SARS-CoV-2 感染的分子特征。
使用已建立的具有 APOL1 高风险等位基因的 iPSC 细胞,我们将确定 APOL1 基因型对
感染和炎症细胞因子引起的肾损伤。这些研究将确定哪些肾细胞是
能够被 SARS-CoV-2 感染,以及病毒诱导的肾细胞类型特异性分子变化
感染和炎症细胞因子。目标 3:我们将使用最近开发的适应小鼠的 SARS-CoV-2
病毒以确定 SARS CoV-2 感染对体内肾功能的影响。使用新描述的 BAC-
表达人 APOL1 G0、G1 或 G2 等位基因的转基因小鼠,我们将定义人 APOL1 的影响
SARS-CoV-2 感染期间肾功能和肾损伤的高风险等位基因。开发成功
这些模型将建立一个研究病毒感染相关肾损伤和影响的范例
小鼠遗传学来定义肾损伤和 CG 的机制,以及未来的治疗干预措施。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-omic analysis of human kidney tissue identified medulla-specific gene expression patterns.
对人类肾脏组织的多组学分析确定了髓质特异性基因表达模式。
- DOI:10.1016/j.kint.2023.10.024
- 发表时间:2023-11-01
- 期刊:
- 影响因子:19.6
- 作者:Stefan Haug;Selvaraj Muthusamy;Yong Li;Galen Stewart;Xianwu Li;Martin Treppner;A. Köttgen;S. Akilesh
- 通讯作者:S. Akilesh
Digital spatial profiling of collapsing glomerulopathy.
塌陷性肾小球病的数字空间分析。
- DOI:
- 发表时间:2022-05
- 期刊:
- 影响因子:19.6
- 作者:Smith, Kelly D;Prince, David K;Henriksen, Kammi J;Nicosia, Roberto F;Alpers, Charles E;Akilesh, Shreeram
- 通讯作者:Akilesh, Shreeram
Collapsing glomerulopathy: unraveling varied pathogeneses.
塌陷性肾小球病:阐明各种发病机制。
- DOI:
- 发表时间:2023-05-01
- 期刊:
- 影响因子:3.2
- 作者:Smith, Kelly D;Akilesh, Shreeram
- 通讯作者:Akilesh, Shreeram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shreeram Akilesh其他文献
Shreeram Akilesh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shreeram Akilesh', 18)}}的其他基金
相似海外基金
Malaria associated pathogenesis of chronic kidney disease (MAP-CKD)
疟疾相关的慢性肾病发病机制(MAP-CKD)
- 批准号:
10522245 - 财政年份:2022
- 资助金额:
$ 40.7万 - 项目类别:
Impact of Clonal Hematopoiesis on the Progression of Kidney Disease
克隆造血对肾脏疾病进展的影响
- 批准号:
10611485 - 财政年份:2022
- 资助金额:
$ 40.7万 - 项目类别:
Malaria associated pathogenesis of chronic kidney disease (MAP-CKD)
疟疾相关的慢性肾病发病机制(MAP-CKD)
- 批准号:
10653219 - 财政年份:2022
- 资助金额:
$ 40.7万 - 项目类别:
Impact of Clonal Hematopoiesis on the Progression of Kidney Disease
克隆造血对肾脏疾病进展的影响
- 批准号:
10419907 - 财政年份:2022
- 资助金额:
$ 40.7万 - 项目类别:
Epidemiologic and Translational Investigation of Long-Term Kidney Outcomes After COVID-19
COVID-19 后长期肾脏结局的流行病学和转化调查
- 批准号:
10543194 - 财政年份:2021
- 资助金额:
$ 40.7万 - 项目类别: