A Vascularized Blood-Brain Barrier Model for In Vitro Testing of Drug and Immunotherapy Delivery
用于药物和免疫治疗递送体外测试的血管化血脑屏障模型
基本信息
- 批准号:10699597
- 负责人:
- 金额:$ 29.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalArteriesAstrocytesBiological SciencesBispecific AntibodiesBloodBlood - brain barrier anatomyBlood VesselsBone MarrowBrainBrain DiseasesBrain NeoplasmsCarboplatinCellsCisplatinClientCollaborationsDataDevicesDextransDisease ProgressionDoxorubicinDrug TargetingEndothelial CellsEnvironmentEquilibriumExtracellular MatrixExtravasationFoot ProcessGliomaGoalsHomeostasisHumanImmuneImmune systemImmunooncologyImmunotherapeutic agentImmunotherapyLeftLegal patentLeukocytesLymphocyteMarketingMembraneMicrofluidic MicrochipsMicrofluidicsModelingMusNatural Killer CellsNutrientOrganPatientsPenetrancePerfusionPericytesPermeabilityPharmaceutical PreparationsPharmacologic SubstancePhasePhysiologicalPhysiologyPinocytosisPlasmaPolymersPropertyProteinsResearchSmall Business Innovation Research GrantSpeedSurfaceSystemT-LymphocyteTechnologyTight JunctionsUp-RegulationVascularizationVeinsWorkbevacizumabchimeric antigen receptor T cellscommercializationdesigndrug discoverydrug testingfluorescence imagingin vitro Modelin vitro testingin vivoin vivo Modelmonocytemonolayermouse modelneoplastic cellneurovascular unitresponserhodamine dextransmall moleculesuccesstooltumorγδ T cells
项目摘要
PROJECT SUMMARY
The brain is a highly-specialized, finely-tuned organ that depends for its function on maintaining homeostasis
within narrowly-defined limits. This is achieved in large part by the Blood-Brain Barrier (BBB), which tightly
regulates what can and can’t get into the brain. Functionally, the BBB is the combined work of endothelial cells
(EC), pericytes and astrocytes, the latter two of which act on the EC to maintain an extensive network of tight
junctions, promote the expression of specialized transporters, and limit the rate of transcellular pinocytosis. This
lack of free transfer between blood and brain for non-lipophilic species severely limits the entry of many,
otherwise useful, small molecule drugs. For example, cisplatin (<3% Brain/Plasma ratio), is effective in non-brain
tumors, but has poor penetrance and low efficacy against brain tumors such as glioma. Similarly, delivery of
immunotherapeutics such as bevacizumab (0.2%) and bi-specific antibodies is also limited, and much is still to
be understood regarding the delivery of immune cells to the brain, including CAR-Ts, NK cells, γδ T cells and
the patient’s own monocytes and lymphocytes. Finally, there are significant differences between mouse and
human physiology including in the immune system. Many drug developers are therefore turning to human cell-
based systems rather than mouse models. The primary goal of this Phase I SBIR application is to demonstrate
the feasibility of Aracari Biosciences’ proprietary technology to model appropriate drug and immunotherapeutic
delivery across the human BBB. Aracari’s patented core technology is a perfusable human vascular network
within a microfluidic device that fits in a convenient 96-well plate format. This technology has been successfully
developed into commercialized products including the vascularized micro-organ (VMOTM) and the vascularized
micro-tumor (VMTTM). Importantly, leukocytes can be perfused through the vessels and on stimulation they will
adhere and extravasate as they do in vivo. We have also developed a vascularized micro-brain (VMB), which is
the focus of this application. This incorporates a perfused neurovascular unit (NVU) comprised of human BBB
EC, pericytes and astrocytes, all embedded in a brain-mimicking extracellular matrix. The vessels show
upregulation of BBB transporters and junctional proteins, and greatly-reduced permeability compared to non-
NVU vessels. Tumor cells (glioma) can be added to model brain tumors (VMB-T) and the potential compromise
of the BBB. This model will provide unprecedented opportunities to study drug responses of glioma and other
brain tumors in a more natural environment. Our preliminary data show the feasibility of our goals which are:
Specific Aim 1: Characterize permeability of a small panel of brain-targeted drugs in the VMB and VMB-T
Specific Aim 2: Characterize delivery of a small panel of immunotherapeutic drugs in the VMB and VMB-T
Specific Aim 3: Characterize delivery of immune cells in the VMB and VMB-T
Completion of these aims will provide us with a unique tool we can offer to pharmaceutical companies for studies
on BBB properties, and delivery of neuroactive drugs and immuno-oncology drugs and cells.
项目概要
大脑是一个高度专业化、微调的器官,其功能依赖于维持体内平衡
这在很大程度上是通过血脑屏障(BBB)实现的,它紧密地连接着。
从功能上来说,血脑屏障是内皮细胞的共同作用。
(EC)、周细胞和星形胶质细胞,后两者作用于 EC 以维持广泛的紧密网络
连接,促进专门转运蛋白的表达,并限制跨细胞胞饮作用的速率。
非亲脂性物质在血液和大脑之间缺乏自由转移,严重限制了许多物质的进入,
其他有用的小分子药物例如顺铂(<3% 脑/血浆比率)对非脑有效。
肿瘤,但对脑肿瘤(如神经胶质瘤)的外显率差且疗效低。
贝伐珠单抗(0.2%)和双特异性抗体等免疫治疗药物也很有限,而且还有很多工作要做
了解免疫细胞向大脑的传递,包括 CAR-T、NK 细胞、γδ T 细胞和
最后,小鼠和患者自身的单核细胞和淋巴细胞之间存在显着差异。
因此,许多药物开发商正在转向人体细胞。
第一阶段 SBIR 应用的主要目标是演示基于系统的系统而不是小鼠模型。
Aracari Biosciences 专有技术建模适当药物和免疫治疗的可行性
Aracari 的专利核心技术是可灌注的人体血管网络。
该技术已成功应用于适合方便的 96 孔板格式的微流体装置中。
开发成商业化产品,包括血管化微器官(VMOTM)和血管化
重要的是,白细胞可以通过血管进行灌注,并且在受到刺激时它们会被灌注。
我们还开发了一种血管化微脑(VMB),它是与体内一样的粘附和外渗。
该应用的重点是包含由人类 BBB 组成的灌注神经血管单元 (NVU)。
EC、周细胞和星形胶质细胞均嵌入模拟大脑的细胞外基质中。
与非 BBB 转运蛋白和连接蛋白相比,通透性大大降低
NVU 血管(神经胶质瘤)可以添加到脑肿瘤模型 (VMB-T) 和潜在的妥协中。
该模型将为研究神经胶质瘤和其他疾病的药物反应提供前所未有的机会。
我们的初步数据显示了我们目标的可行性:
具体目标 1:表征一小部分脑靶向药物在 VMB 和 VMB-T 中的渗透性
具体目标 2:表征一小部分免疫治疗药物在 VMB 和 VMB-T 中的递送
具体目标 3:表征 VMB 和 VMB-T 中免疫细胞的递送
完成这些目标将为我们提供一个独特的工具,我们可以为制药公司提供研究
关于 BBB 特性以及神经活性药物和免疫肿瘤药物和细胞的输送。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
G. WESLEY HATFIELD其他文献
G. WESLEY HATFIELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('G. WESLEY HATFIELD', 18)}}的其他基金
A Functional Census of p53 Cancer and Suppressor Mutants
p53 癌症和抑制突变体的功能普查
- 批准号:
7253241 - 财政年份:2005
- 资助金额:
$ 29.5万 - 项目类别:
A Functional Census of p53 Cancer and Suppressor Mutants
p53 癌症和抑制突变体的功能普查
- 批准号:
7426313 - 财政年份:2005
- 资助金额:
$ 29.5万 - 项目类别:
BRANCHED CHAIN AMINO ACID BIOSYNTHESIS IN E COLI
大肠杆菌中支链氨基酸的生物合成
- 批准号:
2623471 - 财政年份:1998
- 资助金额:
$ 29.5万 - 项目类别:
BRANCHED CHAIN AMINO ACID BIOSYNTHESIS IN E COLI
大肠杆菌中支链氨基酸的生物合成
- 批准号:
6519783 - 财政年份:1998
- 资助金额:
$ 29.5万 - 项目类别:
BRANCHED CHAIN AMINO ACID BIOSYNTHESIS IN E COLI
大肠杆菌中支链氨基酸的生物合成
- 批准号:
6636212 - 财政年份:1998
- 资助金额:
$ 29.5万 - 项目类别:
BRANCHED CHAIN AMINO ACID BIOSYNTHESIS IN E COLI
大肠杆菌中支链氨基酸的生物合成
- 批准号:
6744706 - 财政年份:1998
- 资助金额:
$ 29.5万 - 项目类别:
相似国自然基金
线粒体丙酮酸转运载体调控血小板活化及动脉血栓形成的作用和机制研究
- 批准号:82300362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
振荡剪切应力通过ICAM5介导巨噬细胞活化导致主动脉夹层形成的分子机制
- 批准号:82300540
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
VSMC机械感受器TRPM7调控H3S10p/NOTCH3促进冠状动脉侧支生成的作用与机制研究
- 批准号:82300366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于RNA m6A甲基化调控细胞程序性坏死探讨缺硒鸡动脉损伤机制的研究
- 批准号:32372967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Kallistatin抑制管周脂肪细胞线粒体裂变拮抗动脉粥样硬化的作用及机制研究
- 批准号:82370443
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Function of a lens protein betaA3/A1-crystallin in astrocytes
星形胶质细胞中晶状体蛋白 betaA3/A1-晶状体蛋白的功能
- 批准号:
10366476 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Microglia/macrophages as target to prevent intracerebral hemorrhage in KRAS mutation-induced brain arteriovenous malformations
小胶质细胞/巨噬细胞作为预防 KRAS 突变诱发的脑动静脉畸形脑出血的靶点
- 批准号:
10609931 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10516501 - 财政年份:2022
- 资助金额:
$ 29.5万 - 项目类别:
Cellular mechanisms of perivascular fibroblast development and dependence on PDGF signaling
血管周围成纤维细胞发育的细胞机制和对 PDGF 信号传导的依赖
- 批准号:
10384535 - 财政年份:2021
- 资助金额:
$ 29.5万 - 项目类别: