Modular, Chemical-Free Advanced Oxidation of 1,4-Dioxane and its Co-Contaminants in Ground Water
地下水中 1,4-二恶烷及其共污染物的模块化、无化学品高级氧化
基本信息
- 批准号:10698027
- 负责人:
- 金额:$ 16.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAdsorptionAirAnthraquinonesBenchmarkingBenignCarbon DioxideCellsCharacteristicsChargeChemicalsChemistryCollaborationsConsumptionCoupledCouplingDecentralizationDioxanesDistributed SystemsDoseElectricityElectron TransportEnergy consumptionEngineeringEnvironmental sludgeEstheticsEthylene DichloridesEvolutionExcisionExhibitsExposure toFiltrationGasesGoalsHealthHouseholdHumanHydrogenHydrogen PeroxideImmobilizationIndustryIronLightManganeseMediatingMembraneMetalsMethodsMunicipalitiesOxidantsOxygenParentsPerformancePhasePhysiologic pulsePrecipitationPrivatizationProcessProductionReactionReactive Oxygen SpeciesResearch Project GrantsRiskSchemeSiteSolar EnergySourceStructureSuperfundSurfaceSystemTechnologyTechnology TransferTestingTimeToxic effectToxicologyTrichloroethanesTrichloroethyleneUltraviolet RaysVolatilizationWaterWater Pollutantscatalystchemical additionchemical propertycostdesigndrinking waterexperimental studyexposed human populationfield studyground waterhydrophilicityimprovedinnovationinterfacialnanobubblenanoscalenext generationnoveloperationoxidationperformance testsphysical propertypollutantprototyperemediationresidencesensortechnology validationultravioletultraviolet irradiationwater treatment
项目摘要
ABSTRACT
The ultimate goal of this remediation project is to design, fabricate, test, and implement point-of-use, small-
scale, water treatment systems that can remove 1,4-dioxane (1,4-DX) and its frequently co-occurring
contaminants, trichloroethylene (TCE), 1,1-dichloroethane (1,1-DCA) and 1,1,1,-trichloroethane (1,1,1-TCA),
from contaminated ground water. The advanced oxidation process (AOP)–the process that employs highly
reactive •OH as main oxidant–is considered to be the most effective among established water treatment
methods for the destruction of these contaminants. However, enabling AOP in a small-scale, distributed
system (i.e., in contrast to centralized large-scale treatment and water delivery through a network of pipe) is
technically challenging due to the requirement for a precursor chemical (such as H2O2) that needs to be
activated on site to produce •OH and the high energy demand.
We will synthesize efficient catalyst materials, engineer various components of the system, and
fabricate two highly-innovative prototype AOP reactors. The first reactor will employ a new catalyst that can
selectively produce high concentrations of H2O2 using only water and oxygen as a source. The produced H2O2
will be activated by another newly-developed catalyst to produce •OH without any external energy/chemical
supplies and without producing undesirable byproducts (which would otherwise require additional treatment).
Coupled together, this catalytic system will enable for the first time AOP of ground water in a small, compact,
distributed water treatment system. The second reactor will employ nanobubble technology. In this system,
ambient air will be introduced to the water in the form of nanobubbles which collapse to produce •OH that will
destroy 1,4-DX. Strategies to enhance the production of •OH through promotion of effective bubble collapse
will be developed. Unlike any existing AOPs, both reactors will not require continuous supply of chemicals. In
addition, they will either be solar powered (completely off-grid) or use a much smaller amount of electricity than
conventional AOPs that employ ultraviolet (UV) irradiation.
We will test the performance of prototype reactors and compare them with benchmark UV/H2O2
process (i.e., adding H2O2 and irradiating UV light). This will involve a comprehensive analysis of the efficiency
of parent compound (1,4-DX) destruction, as well as the evolution of reaction byproducts. Reduction of the
deleterious effects of consuming 1,4-DX-containing water will be investigated in collaboration with Research
Project 1. The prototype reactors will undergo testing in select field sites in Region 1 (identified as being
contaminated by Research Project 2) to determine their efficiency under real world situations and their activity
under long term conditions (employing sensors developed by Research Project 3). By promoting the continual
removal of 1,4-DX and its co-occurring contaminants from drinking water sources, this project will directly
reduce human exposure to these pollutants and thereby limit their adverse health effects.
抽象的
该修复项目的最终目标是设计、制造、测试和实施使用点、小型
水垢、可去除 1,4-二恶烷 (1,4-DX) 及其常见共存物的水处理系统
污染物,三氯乙烯 (TCE)、1,1-二氯乙烷 (1,1-DCA) 和 1,1,1,-三氯乙烷 (1,1,1-TCA),
来自受污染地下水的高级氧化工艺(AOP)——该工艺采用高度氧化工艺。
反应性•OH作为主要氧化剂——被认为是现有水处理中最有效的
然而,AOP 能够以小规模、分布式的方式被破坏。
系统(即,与通过管道网络进行集中大规模处理和供水相比)
由于需要前体化学品(例如 H2O2),因此在技术上具有挑战性
现场激活以产生·OH 和高能量需求。
我们将合成高效的催化剂材料,设计系统的各种组件,并
制造两个高度创新的原型 AOP 反应器,第一个反应器将采用一种新型催化剂。
仅使用水和氧气作为来源选择性地产生高浓度的 H2O2。
将被另一种新开发的催化剂激活,无需任何外部能源/化学物质即可产生·OH
供应且不会产生不需要的副产品(否则需要额外的处理)。
结合在一起,该催化系统将首次在小型、紧凑、
分布式水处理系统。第二个反应器将采用纳米气泡技术。
环境空气将以纳米气泡的形式引入水中,纳米气泡破裂后产生 OH,
破坏1,4-DX 通过促进有效的气泡破裂来增加•OH 的产生。
与任何现有的 AOP 不同,这两个反应堆不需要持续供应化学品。
此外,它们要么采用太阳能供电(完全离网),要么使用比
采用紫外线 (UV) 照射的传统 AOP。
我们将测试原型反应器的性能并将其与基准 UV/H2O2 进行比较
过程(即添加 H2O2 和照射紫外光)这将涉及效率的综合分析。
母体化合物 (1,4-DX) 的破坏,以及反应副产物的减少。
将与研究机构合作调查饮用含有 1,4-DX 的水的有害影响
项目 1. 原型反应堆将在 1 区(确定为
受研究项目 2) 污染,以确定其在现实世界情况下的效率及其活动
在长期条件下(采用研究项目 3 开发的传感器)。
去除饮用水源中的 1,4-DX 及其共生污染物,该项目将直接
减少人类接触这些污染物,从而限制其对健康的不利影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaehong Kim其他文献
Jaehong Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaehong Kim', 18)}}的其他基金
Modular, Chemical-Free Advanced Oxidation of 1,4-Dioxane and its Co-Contaminants in Ground Water
地下水中 1,4-二恶烷及其共污染物的模块化、无化学品高级氧化
- 批准号:
10361889 - 财政年份:2022
- 资助金额:
$ 16.51万 - 项目类别:
相似国自然基金
回收干空气潜热内冷吸附和回热辅助分级解吸的空气碳捕集循环
- 批准号:52376011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于石墨烯自组装凝胶的太阳能空气取水吸附机理及热湿增效研究
- 批准号:52376203
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于吸湿性溶液定向输运的连续吸附空气取水研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
室内空气中半挥发性有机物动态气粒分配机理及表征研究
- 批准号:51908563
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
超细颗粒物对活性炭吸附去除室内有机气态污染物影响研究
- 批准号:51908402
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dialysate regeneration system based on photo-electrochemical urea oxidation and reactive adsorption to enable portable hemodialysis
基于光电化学尿素氧化和反应吸附的透析液再生系统,可实现便携式血液透析
- 批准号:
10761594 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
GCS-CEAS: a novel tool for exposure assessment during disaster response
GCS-CEAS:灾难响应期间暴露评估的新工具
- 批准号:
10699942 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
GCS-CEAS: a novel tool for exposure assessment during disaster response
GCS-CEAS:灾难响应期间暴露评估的新工具
- 批准号:
10699942 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
ELIMINATION OF AIRBORNE VOLATILE COMPOUNDS THROUGH INCORPORATION OF ADVANCED 3D NANOSTRUCTURED CATALYTIC COATINGS IN ADSORPTION/DECOMPOSITION AIR PURIFICATION SYSTEMS
通过在吸附/分解空气净化系统中采用先进的 3D 纳米结构催化涂层消除空气中的挥发性化合物
- 批准号:
10384126 - 财政年份:2022
- 资助金额:
$ 16.51万 - 项目类别: