Physiologically relevant cardiac tissue culture model for drug testing and disease modeling
用于药物测试和疾病建模的生理相关心脏组织培养模型
基本信息
- 批准号:10654152
- 负责人:
- 金额:$ 46.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-03 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAdverse drug effectBiological ModelsCardiacCardiac MyocytesCardiotoxicityCardiovascular DiseasesCardiovascular systemCategoriesCellsCharacteristicsClinicalConsumptionCulture MediaDataDirect Lytic FactorsDiseaseDisease modelDrug IndustryDrug ModelingsDrug ScreeningDrug toxicityEffectivenessElectric StimulationElectrocardiogramElectrophysiology (science)FDA approvedFrequenciesFunctional disorderHealthHeartHeart DiseasesHeart RateHeart failureHip region structureHumanHuman bodyHypertensionHypertrophyIschemiaMeasuresMechanicsMetabolismModelingMonitorMyocardiumNutrientOrganPathologicPathologyPatientsPharmaceutical PreparationsPhenotypePhysiologicalPhysiologyPropertyResearchSafetySliceStimulusStressStretchingStructureSystemTechnologyTestingTherapeuticThickTimeTissue ModelTissuesToxic effectTreatment EfficacyTreatment Failureaorta constrictioncell typecostcost effectivedrug candidatedrug developmentdrug discoverydrug efficacydrug testingefficacy testingfetalfirst-in-humanfunctional adaptationheart functionheart metabolismhemodynamicshuman tissueimaging systemimprovedin vivopre-clinicalpressurereal time monitoringresponsesensorstressorsuccesstherapeutic evaluationtissue culturevoltage
项目摘要
Human tissue modelling in culture is a major challenge for drug discovery and screening, and disease modeling.
The ideal cardiac tissue culture model (CTCM) should accurately recreate the critical organ-level structure and
function. The success of CTCM depends on ability to mimic what occurs in the human body in physiological and
pathophysiological conditions. The heart is a unique organ that is subject to continuous cycles of alternating
pressure and stretch due to hemodynamic loading and unloading. These hemodynamic stressors are of critical
importance to cardiac function and metabolism in health and disease. Changes in stress within physiologic range
result in physiological remodeling, whereas significant changes (e.g., hypertension, ischemia, valve disease)
result in adverse pathological remodeling leading to cardiovascular dysfunction. We recently developed a system
to culture 300µM thick human heart slices that fully maintains their functionality for over 12 days through providing
the precise-cardiac-cycle hemodynamic pressures, stresses and electrical stimulation. This technology provides
access to complete 3D multicellular system that is highly similar to human heart tissue and emulates
physiological or pathological conditions, both functionally and structurally. Within our CTCM, we can control
electrical stimulation (current amplitude and frequency) as well as the critical mechanical parameters including
preload, afterload, pressures, rate of pressure change, and heart rate (HR) to accurately model normal and
pathological diseased conditions.
We hypothesize that establishment of physiologically relevant Human cardiac Tissue Culture Model needs
continuous functional monitoring of the human heart tissue that undergo a replication of all in vivo–like structural
and functional adaptation during health and disease. Through continuous monitoring of any changes on cardiac
function, this system will be able to accurately assess drug toxicity and efficacy in healthy and diseased cardiac
tissue. We will validate To test this hypothesis, we propose the following aims:
Specific Aim 1: (a) Incorporation of real-time monitoring of contractile force, strain, and
electrophysiological properties in culture for 12 days, and (b) validate the CTCM with real-time
monitoring to accurately predict drug cardiotoxicity (12 cardiotoxins. Specific Aim 2: Modeling cardiac
pathology using CTCM and testing for testing drug efficacy.
Successful completion of this project will validate our CTCM system and fulfill a significant need by the
pharmaceutical industry and regulatory bodies for a medium throughput, tissue culture technology that faithfully
replicates the human cellular and pathophysiology and is highly sensitive for cardiotoxicity responses to drugs
for drug discovery and screening. Such a system will enable better mechanistic understanding of heart failure
therapies, minimize drug related adverse effects in patients and enable faster, and more cost-effective drug
development and screening and enhance the confidence in a candidate drug by regulatory bodies (eg. FDA).
培养中的人体组织建模是药物发现和筛选以及疾病建模的主要挑战。
理想的心脏组织培养模型(CTCM)应准确地重建关键的器官水平结构并
CTCM 的成功取决于模仿人体生理和功能的能力。
心脏是一个独特的器官,会经历连续的交替循环。
由于血流动力学加载和卸载而产生的压力和拉伸这些血流动力学应激源至关重要。
生理范围内的压力变化对心脏功能和代谢的重要性。
导致生理重塑,而显着变化(例如高血压、缺血、瓣膜疾病)
导致不良病理重塑,导致心血管功能障碍。
培养 300μM 厚的人类心脏切片,通过提供充分保持其功能超过 12 天的时间
该技术提供精确的心脏周期血流动力学压力、压力和电刺激。
访问与人类心脏组织高度相似并模拟的完整 3D 多细胞系统
在我们的 CTCM 中,我们可以在功能和结构上控制生理或病理条件。
电刺激(电流幅度和频率)以及关键机械参数,包括
前负荷、后负荷、压力、压力变化率和心率 (HR),以准确模拟正常和
病理疾病状况。
我们利用建立生理相关的人类心脏组织培养模型的需要
对人类心脏组织进行连续功能监测,该组织经历了所有体内类似结构的复制
以及健康和疾病期间的功能适应。
功能,该系统将能够准确评估药物对健康和患病心脏的毒性和疗效
我们将验证为了检验这一假设,我们提出以下目标:
具体目标 1:(a) 纳入收缩力、应变和收缩力的实时监测
培养 12 天的电生理特性,以及 (b) 实时验证 CTCM
监测以准确预测药物心脏毒性(12 种心脏毒素)。具体目标 2:建立心脏模型
使用 CTCM 进行病理学检查并进行药物疗效测试。
该项目的成功完成将验证我们的 CTCM 系统并满足
制药行业和监管机构提供中等通量的组织培养技术,忠实地
复制人体细胞和病理生理学,对药物的心脏毒性反应高度敏感
这样的系统将有助于更好地了解心力衰竭的机制。
疗法,最大限度地减少患者与药物相关的不良反应,并实现更快、更具成本效益的药物
开发和筛选并增强监管机构(例如 FDA)对候选药物的信心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guruprasad A Giridharan其他文献
Guruprasad A Giridharan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guruprasad A Giridharan', 18)}}的其他基金
Magnetic Cellular Assembly and Microfluidic Conditioning for Generation of Functi
用于产生功能的磁性细胞组装和微流体调节
- 批准号:
8574075 - 财政年份:2013
- 资助金额:
$ 46.42万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 46.42万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 46.42万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 46.42万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 46.42万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 46.42万 - 项目类别: