Dual specific gene editing drugs delivered by nanoparticles targeting HBV/HIV coinfection

针对 HBV/HIV 双重感染的纳米颗粒递送的双特异性基因编辑药物

基本信息

  • 批准号:
    10403587
  • 负责人:
  • 金额:
    $ 18.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-10 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

A higher prevalence of chronic hepatitis B virus (HBV), 7.4% globally and 15 to 28% in highly endemic areas, is observed in people living with HIV (PLWH). While current combined antiretroviral therapy (cART) can restrict HBV/HIV replication, cART cannot eliminate the HIV/HBV DNAs that are integrated into the host genome. As such, HBV and HIV persist in cART-controlled individuals, and cART cessation readily leads to viral reactivation and disease progression. Thus, any curative strategy should include a means to eliminate integrated viral DNA from the reservoir cells that harbor HIV and/or HBV (HBV/HIV) DNA without collateral cytotoxic reactions. CRISPR (clustered regularly interspaced short palindromic repeats) Cas9 (CRISPR-associated protein 9)-mediated gene editing is an appealing approach to tackle this problem. The keys to success in the CRISPR/Cas9 approach are to select virus-specific target genes that are critical for viral replication yet avoid off-target effects on the human genome and ensure efficient delivery of the gene-editing drugs to target cells. The current CRISPR/Cas9 delivery technologies often require viral vectors, which pose safety concerns for therapeutic applications in humans. Synthetic Cas9-ribonucleoprotein (RNP) is an attractive non-viral formulation for the CRISPR/Cas9 system due to its quick DNA cleavage activity, low frequency of off-target effects, low risk of insertional mutagenesis, easy production, and readiness for clinical application. However, existing non-viral strategies for Cas9-RNP delivery face a number of challenges, such as high cytotoxicity, poor in vivo stability, large particle sizes, lack of specific tissue- and/or cell-targeting abilities, variable loading of the RNP cargo, and potential immunogenicity. These challenges limit the application of Cas9-RNP for in vivo systemic application. Therefore, advances in the discovery of novel interventions targeting incorporated viral DNA are urgently needed for the cure of HBV/HIV co-infection. To address these needs, we have: 1) selected specific HBV/HIV target genes that are crucial for viral replication but share no overlap with (off-targeting) the human genome; 2) synthesized guide-RNAs (gRNA) and Cas9-RNP as therapeutic drugs; 3) developed novel nanoparticles (NP) with longer cleavable polyethylene glycol (PEG) arms to decorate the HBV/HIV gRNA-Cas9 RNP and slow the release of the prodrug intracellularly; and 4) established HBV/HIV cellular models to test the efficacy and cytotoxicity of our generated HBV/HIV gRNA-RNP. In this study, we will test our newly designed gene editing drugs that target viral DNA but not the human genome using HBV/HIV cellular models. We hypothesize that specific CRISPR/Cas9 gene editing drugs will abolish HBV/HIV replication and elicit minimum cytotoxicity in these cellular models. We propose two specific aims to test our hypothesis: Aim 1 will screen and test CRISPR/Cas9 gene editing drugs using a nucleofection approach in our cellular HBV/HIV models; Aim 2 will generate and test HBV/HIV gRNA-Cas9 NPs and compare their efficacy and cytotoxicity in our cellular HBV/HIV models. The objectives of this project are to collect critical information, establish new techniques, and lay the foundation for achieving our long-term goal of discovery a cure for HBV/HIV co-infection.
慢性乙型肝炎病毒 (HBV) 的患病率较高,全球为 7.4%,在高流行地区为 15% 至 28%。 在艾滋病毒感染者(PLWH)中观察到。虽然目前的联合抗逆转录病毒疗法(cART)可以限制 HBV/HIV 复制时,cART 无法消除整合到宿主基因组中的 HIV/HBV DNA。像这样, HBV 和 HIV 在 cART 控制的个体中持续存在,并且 cART 停止很容易导致病毒重新激活和 疾病进展。因此,任何治疗策略都应包括消除整合病毒 DNA 的方法。 携带 HIV 和/或 HBV (HBV/HIV) DNA 且没有附带细胞毒性反应的储存细胞。基因编辑技术 (成簇规则间隔短回文重复序列)Cas9(CRISPR 相关蛋白 9)介导的基因 编辑是解决这个问题的一种有吸引力的方法。 CRISPR/Cas9 方法成功的关键是 选择对病毒复制至关重要的病毒特异性靶基因,同时避免对人类产生脱靶影响 基因组并确保基因编辑药物有效递送至靶细胞。当前的 CRISPR/Cas9 交付 技术通常需要病毒载体,这给人类治疗应用带来了安全问题。 合成 Cas9-核糖核蛋白 (RNP) 对于 CRISPR/Cas9 系统来说是一种有吸引力的非病毒制剂,因为 DNA 切割活性快、脱靶效应频率低、插入突变风险低、易于 生产和临床应用准备。然而,现有的 Cas9-RNP 递送非病毒策略 面临细胞毒性高、体内稳定性差、粒径大、缺乏特异性等诸多挑战 组织和/或细胞靶向能力、RNP 货物的可变负载以及潜在的免疫原性。这些 挑战限制了 Cas9-RNP 在体内系统应用中的应用。因此,发现的进展 迫切需要针对整合病毒 DNA 的新型干预措施来治愈 HBV/HIV 双重感染。 为了满足这些需求,我们:1)选择对病毒复制至关重要的特定 HBV/HIV 靶基因 但与人类基因组没有重叠(脱靶); 2) 合成向导RNA (gRNA) 和Cas9-RNP 作为治疗药物; 3)开发了具有更长可裂解聚乙二醇(PEG)臂的新型纳米颗粒(NP) 修饰 HBV/HIV gRNA-Cas9 RNP 并减缓前药在细胞内的释放; 4) 建立 HBV/HIV 细胞模型用于测试我们生成的 HBV/HIV gRNA-RNP 的功效和细胞毒性。在这项研究中, 我们将使用 HBV/HIV 测试我们新设计的基因编辑药物,这些药物针对病毒 DNA,但不针对人类基因组 细胞模型。我们假设特定的 CRISPR/Cas9 基因编辑药物将消除 HBV/HIV 复制 并在这些细胞模型中引起最小的细胞毒性。我们提出两个具体目标来检验我们的假设: 1 将使用核转染方法在我们的细胞 HBV/HIV 中筛选和测试 CRISPR/Cas9 基因编辑药物 模型;目标 2 将生成并测试 HBV/HIV gRNA-Cas9 NP,并比较它们在我们的研究中的功效和细胞毒性。 细胞 HBV/HIV 模型。该项目的目标是收集关键信息、建立新技术、 并为实现我们发现治疗 HBV/HIV 合并感染的长期目标奠定基础。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oxidative Stress Induces Mitochondrial Compromise in CD4 T Cells From Chronically HCV-Infected Individuals.
氧化应激会导致慢性 HCV 感染者的 CD4 T 细胞线粒体受损。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schank, Madison;Zhao, Juan;Wang, Ling;Nguyen, Lam Ngoc Thao;Cao, Dechao;Dang, Xindi;Khanal, Sushant;Zhang, Jinyu;Zhang, Yi;Wu, Xiao Y;Ning, Shunbin;Gazzar, Mohamed El;Moorman, Jonathan P;Yao, Zhi Q
  • 通讯作者:
    Yao, Zhi Q
TRF2 inhibition rather than telomerase disruption drives CD4T cell dysfunction during chronic viral infection.
在慢性病毒感染期间,TRF2 抑制而不是端粒酶破坏导致 CD4T 细胞功能障碍。
  • DOI:
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Nguyen, Lam Ngoc Thao;Nguyen, Lam Nhat;Zhao, Juan;Schank, Madison;Dang, Xindi;Cao, Dechao;Khanal, Sushant;Wu, Xiao Y;Zhang, Yi;Zhang, Jinyu;Ning, Shunbin;Wang, Ling;El Gazzar, Mohamed;Moorman, Jonathan P;Yao, Zhi Q
  • 通讯作者:
    Yao, Zhi Q
Mitochondrial topoisomerase 1 inhibition induces topological DNA damage and T cell dysfunction in patients with chronic viral infection.
线粒体拓扑异构酶 1 抑制会导致慢性病毒感染患者的拓扑 DNA 损伤和 T 细胞功能障碍。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dang, Xindi;Cao, Dechao;Zhao, Juan;Schank, Madison;Khanal, Sushant;Nguyen, Lam Ngoc Thao;Wu, Xiao Y;Zhang, Yi;Zhang, Jinyu;Jiang, Yong;Ning, Shunbin;Wang, Ling;El Gazzar, Mohamed;Moorman, Jonathan P;Yao, Zhi Q
  • 通讯作者:
    Yao, Zhi Q
Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells.
选择性氧化应激会引起人类 T 细胞端粒和线粒体的双重损伤。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Wang, Ling;Lu, Zeyuan;Zhao, Juan;Schank, Madison;Cao, Dechao;Dang, Xindi;Nguyen, Lam Nhat;Nguyen, Lam Ngoc Thao;Khanal, Sushant;Zhang, Jinyu;Wu, Xiao Y;El Gazzar, Mohamed;Ning, Shunbin;Moorman, Jonathan P;Yao, Zhi Q
  • 通讯作者:
    Yao, Zhi Q
Plasma biomarkers for systemic inflammation in COVID-19 survivors.
COVID-19 幸存者全身炎症的血浆生物标志物。
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao, Juan;Schank, Madison;Wang, Ling;Dang, Xindi;Cao, Dechao;Khanal, Sushant;Nguyen, Lam N T;Zhang, Yi;Wu, Xiao Y;Adkins, James L;Pelton, Benjamin J;Zhang, Jinyu;Ning, Shunbin;Gazzar, Mohamed El;Moorman, Jonathan P;Yao, Zhi Q
  • 通讯作者:
    Yao, Zhi Q
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhi Q. Yao其他文献

Human-multimodal deep learning collaboration in 'precise' diagnosis of lupus erythematosus subtypes and similar skin diseases.
人机多模式深度学习协作“精确”诊断红斑狼疮亚型和类似皮肤病。
  • DOI:
    10.1111/jdv.20031
  • 发表时间:
    2024-04-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qianwen Li;Zhi Yang;Kaili Chen;Mingming Zhao;H. Long;Yueming Deng;Haoran Hu;Chenliang Jia;Meiyu Wu;Zhidan Zhao;Huan Zhu;Suqing Zhou;Mingming Zhao;Pengpeng Cao;Shengnan Zhou;Yang Song;Guishao Tang;Juan Liu;Jiao Jiang;Wei Liao;Wenhui Zhou;Bin Yang;Feng Xiong;Suhan Zhang;Xiaofei Gao;Yiqun Jiang;Wei Zhang;Bo Zhang;Yanling He;Liwei Ran;Chunlei Zhang;Wenting Wu;Quzong Suolang;Hanhuan Luo;Xiaojing Kang;Caoying Wu;Hongzhong Jin;Lei Chen;Qing Guo;Guangji Gui;Shanshan Li;He′nan Si;Shuping Guo;Hong;Xiguang Liu;Guo;Danqi Deng;Li;Jianyun Lu;Jinrong Zeng;Xian Jiang;Xiao;Liuqing Chen;Bin Hu;Juan Tao;Yuhao Liu;Gang Wang;G. Zhu;Zhi Q. Yao;Qianyue Xu;Bin Yang;Yu Wang;Yan Ding;Xianxu Yang;Hu Kai;Haijing Wu;Qianjin Lu
  • 通讯作者:
    Qianjin Lu
Digital Commons @ East Tennessee State University Digital Commons @ East Tennessee State University
数字共享@东田纳西州立大学 数字共享@东田纳西州立大学
  • DOI:
    10.14748/ssm.v47i3.1238
  • 发表时间:
    2015-10-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yu He;Yonghong Guo;Yun Zhou;Ying Zhang;C. Fan;Guangxi Ji;Yu Wang;Zhiyuan Ma;J. Lian;Chunqiu Hao;Zhi Q. Yao;Zhansheng Jia
  • 通讯作者:
    Zhansheng Jia

Zhi Q. Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhi Q. Yao', 18)}}的其他基金

Mitochondrial Dysfunction in Aging CD4 T cells in HIV-immune Non-responders.
HIV 免疫无反应者中衰老 CD4 T 细胞的线粒体功能障碍。
  • 批准号:
    10845843
  • 财政年份:
    2021
  • 资助金额:
    $ 18.56万
  • 项目类别:
Dual specific gene editing drugs delivered by nanoparticles targeting HBV/HIV coinfection
针对 HBV/HIV 双重感染的纳米颗粒递送的双特异性基因编辑药物
  • 批准号:
    10161447
  • 财政年份:
    2021
  • 资助金额:
    $ 18.56万
  • 项目类别:
HIV infection-induced mitochondrial dysfunction and premature T cell aging
HIV感染引起的线粒体功能障碍和T细胞过早衰老
  • 批准号:
    10203459
  • 财政年份:
    2021
  • 资助金额:
    $ 18.56万
  • 项目类别:
Telomere loss and T cell aging in HBV vaccine response in HCV-infected individual
HCV 感染者的 HBV 疫苗反应中的端粒丢失和 T 细胞老化
  • 批准号:
    10265317
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
Multiuser Advanced Confocal Microscope
多用户高级共焦显微镜
  • 批准号:
    9791445
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
Gender difference in miRNA-mediated T cell aging during viral infection
病毒感染期间 miRNA 介导的 T 细胞衰老的性别差异
  • 批准号:
    9896225
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
Telomere loss and T cell aging in HBV vaccine response in HCV-infected individual
HCV 感染者的 HBV 疫苗反应中的端粒丢失和 T 细胞老化
  • 批准号:
    10455526
  • 财政年份:
    2019
  • 资助金额:
    $ 18.56万
  • 项目类别:
Telomere attrition and T cell aging in vaccine failure during HIV infection
HIV 感染期间疫苗失败时的端粒磨损和 T 细胞老化
  • 批准号:
    10581156
  • 财政年份:
    2016
  • 资助金额:
    $ 18.56万
  • 项目类别:
ShEEP Proposal for a Multiuser Advanced Biosafe Flow Cytometer
ShEEP 针对多用户高级生物安全流式细胞仪的提案
  • 批准号:
    9211532
  • 财政年份:
    2016
  • 资助金额:
    $ 18.56万
  • 项目类别:
Premature T cell aging and vaccine failure in chronic viral infection
慢性病毒感染中 T 细胞过早衰老和疫苗失败
  • 批准号:
    9023117
  • 财政年份:
    2016
  • 资助金额:
    $ 18.56万
  • 项目类别:

相似国自然基金

多区域环境因素复杂暴露反应关系的空间联合估计方法研究
  • 批准号:
    82373689
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
  • 批准号:
    42301182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
  • 批准号:
    52302437
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
  • 批准号:
    52377108
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
  • 批准号:
    72373129
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

CTSA K12 Program at Indiana University
印第安纳大学 CTSA K12 项目
  • 批准号:
    10622098
  • 财政年份:
    2023
  • 资助金额:
    $ 18.56万
  • 项目类别:
Evaluation of Cancer Health Activism Network for Greater Equity (CHANGE)
癌症健康行动网络的评估以实现更大的公平(变更)
  • 批准号:
    10665478
  • 财政年份:
    2023
  • 资助金额:
    $ 18.56万
  • 项目类别:
San Diego StrokeNet Regional Coordinating Center
圣地亚哥 StrokeNet 区域协调中心
  • 批准号:
    10837573
  • 财政年份:
    2023
  • 资助金额:
    $ 18.56万
  • 项目类别:
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 18.56万
  • 项目类别:
Stem Cells and Aging
干细胞与衰老
  • 批准号:
    10630387
  • 财政年份:
    2023
  • 资助金额:
    $ 18.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了