How do you build an astrocyte?
如何构建星形胶质细胞?
基本信息
- 批准号:10646059
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAnimal BehaviorAnimalsArchitectureAstrocytesBehaviorBiologyBrainBrain DiseasesBrain NeoplasmsCellsCellular MorphologyCellular StructuresChildhoodCollectionCommunicationComplexDevelopmentDiseaseDrosophila genusEducational process of instructingEquilibriumExhibitsFoundationsGenesGeneticGenetic ScreeningGenetic studyGlioblastomaGoalsGrowthHumanIndividualInfiltrationIonsLabelLightMaintenanceMalignant NeoplasmsMammalsMetabolicModelingMolecularMolecular GeneticsMorphogenesisMorphologyMusMutagenesisNatureNervous SystemNeurogliaNeuronsNeuropilNeurotransmittersOrganellesOrganismPathway interactionsPhenotypePlayPositioning AttributeProcessProliferatingPropertyRapid screeningResearchResolutionRoleShapesSignal PathwaySignal TransductionSignaling MoleculeStructureSynapsesSystemTechnologyWorkbiomarker validationbrain healthcell growthcell typeflyforward geneticsgenetic analysisgenetic approachhuman diseaseimaging modalityin vivoinsightmodel organismmutantneural circuitneurotransmitter reuptakenovelprogramsscreeningsingle cell analysissynaptogenesistool
项目摘要
Project Summary
Astrocytes are crucial regulators of brain development and function. Astrocytes acquire a remarkably complex morphology
that allows them to associate with each other, other cell types (e.g. the vasculature) and synapses where they regulate
synaptogenesis, neurotransmitter reuptake, metabolic support, ion balance, and ultimately animal behavior. While it is
believed that the elaborate morphology of astrocytes is absolutely essential for efficient astrocyte function, how astrocytes
acquire this unusually complex architecture remains poorly defined. This is surprising in light of their crucial roles in neural
circuit formation and function, and the fact that disruption of astrocyte growth control results in the most intractable and
deadly human brain tumor, glioblastoma.
How do astrocytes acquire their remarkably morphology, and how do they organize their subcellular architecture
to enable their diverse functions? We will attempt to answer these central questions using Drosophila astrocytes as a model.
Fly astrocytes are remarkably similar to their mammalian counterparts by morphological, developmental, molecular, and
functional criteria, and Drosophila offers a battery of powerful molecular-genetic tools with which to explore fundamental
questions in astrocyte biology that are not available in other organisms. We will begin by comprehensively characterizing
the cell-wide organellar landscape of astrocytes by examining the distribution of ~30 genetically encodable markers that
label cellular organelles (Aim 1). This will allow us to define, with single-cell precision, the basic organellar architecture
of astrocytes. This will be an essential first step toward understanding how their intricate morphology is arranged
ultrastructurally and how it may dictate, or be regulate by, their functions. These cellular landmarks will also enable a
rigorous analysis of mutants that affect astrocyte morphology. In Aim 2, we will perform the first unbiased forward genetic
screen for astrocyte growth control pathways. We have established a unique genetic screening platform for this purpose in
Drosophila based on MARCM technology, which allows for rapid screening with single-cell resolution for mutants that
alter a variety of phenotypes including cell morphology (growth, tiling, association with synapses), changes in proliferation,
or other changes in astrocyte properties. In preliminary work we have optimized our screening system, along with imaging
methods to maximally facilitate our work. This is part of a long term effort to understand how astrocytes are built in vivo.
Defining how astrocytes control their cell growth, infiltration, and tiling will be critical for us to gain a better understanding
how astrocytes affect brain health and disease. Since this will be the first forward genetic screen for astrocyte growth control
pathways, a wealth of exciting mutants await discovery. We will focus our subsequent efforts on pathways conserved in
mammalian astrocytes, and given the strong conservation of the developmental and functional properties in flies and
mammals, we expect our work will identify a number of new high-priority pathways for understanding astrocyte
morphogenesis in mammals.
项目概要
星形胶质细胞是大脑发育和功能的重要调节者。星形胶质细胞获得非常复杂的形态
这使得它们能够彼此关联、与其他细胞类型(例如脉管系统)和它们调节的突触关联
突触发生、神经递质再摄取、代谢支持、离子平衡以及最终的动物行为。虽然它是
人们认为星形胶质细胞的复杂形态对于星形胶质细胞的有效功能绝对必要,星形胶质细胞如何
获取这种异常复杂的架构仍然没有明确的定义。鉴于它们在神经中的关键作用,这是令人惊讶的
电路的形成和功能,以及星形胶质细胞生长控制的破坏导致最棘手和最棘手的事实
致命的人类脑肿瘤,胶质母细胞瘤。
星形胶质细胞如何获得其显着的形态,以及它们如何组织其亚细胞结构
以实现其多样化的功能?我们将尝试使用果蝇星形胶质细胞作为模型来回答这些核心问题。
果蝇星形胶质细胞在形态、发育、分子和功能方面与哺乳动物的星形胶质细胞非常相似。
功能标准,果蝇提供了一系列强大的分子遗传学工具,用于探索基本原理
星形胶质细胞生物学中的问题在其他生物体中不存在。我们将首先全面表征
通过检查约 30 个遗传编码标记的分布来了解星形胶质细胞的细胞器景观
标记细胞器(目标 1)。这将使我们能够以单细胞精度定义基本的细胞器结构
星形胶质细胞。这将是理解它们复杂的形态如何排列的重要的第一步
超微结构以及它如何决定其功能或受其功能调节。这些细胞地标也将使
对影响星形胶质细胞形态的突变体进行严格分析。在目标 2 中,我们将执行第一个无偏正向遗传
筛选星形胶质细胞生长控制途径。我们为此建立了一个独特的基因筛查平台
基于 MARCM 技术的果蝇,可通过单细胞分辨率快速筛选突变体,
改变多种表型,包括细胞形态(生长、平铺、与突触的关联)、增殖变化、
或星形胶质细胞特性的其他变化。在前期工作中,我们优化了我们的筛查系统以及成像系统
最大限度地促进我们工作的方法。这是了解星形胶质细胞如何在体内构建的长期努力的一部分。
定义星形胶质细胞如何控制其细胞生长、浸润和平铺对于我们更好地理解至关重要
星形胶质细胞如何影响大脑健康和疾病。因为这将是星形胶质细胞生长控制的首次正向遗传筛选
途径中,大量令人兴奋的突变体等待被发现。我们将把后续工作的重点放在保存的路径上
哺乳动物星形胶质细胞,并考虑到果蝇和果蝇的发育和功能特性的强烈保守性
哺乳动物,我们预计我们的工作将确定一些新的高优先级途径来理解星形胶质细胞
哺乳动物的形态发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc R Freeman其他文献
Marc R Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc R Freeman', 18)}}的其他基金
2023 Glial Biology: Functional Interactions Among Glia and Neurons Gordon Research Conference and Gordon Research Seminar
2023年胶质细胞生物学:胶质细胞和神经元之间的功能相互作用戈登研究会议和戈登研究研讨会
- 批准号:
10609354 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10454296 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10645162 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10316938 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Characterizing new genes that govern mitochondrial function in the axon
表征控制轴突线粒体功能的新基因
- 批准号:
9168491 - 财政年份:2016
- 资助金额:
$ 23.1万 - 项目类别:
相似国自然基金
底栖动物摄食对沉积物中砷地球化学行为的影响-“As-Fe-S”角度下的作用机理
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
社会性蜘蛛胫毛穹蛛(Stegodyphus tibialis)个性对合作行为适应性的影响
- 批准号:31901084
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
早期触觉经验剥夺对成年后动物行为的影响
- 批准号:31970940
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
多肽纳米凝胶支架引导二甲胺四环素定向活化的小胶质细胞植入对损伤脊髓神经元和轴突影响的动物实验研究
- 批准号:31872310
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
雌激素调节成年雄性斑胸草雀前脑核团电生理活动和突触可塑性对鸣唱行为的影响研究
- 批准号:31860605
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
VTA dopamine connectivity and functional responses to drugs of abuse
VTA 多巴胺连接和对滥用药物的功能反应
- 批准号:
10665966 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
The Role of Microbiome Composition in Amphetamine Abuse
微生物组组成在安非他明滥用中的作用
- 批准号:
10656799 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Sex differences in stress inoculation of addiction-like phenotypes
成瘾样表型应激接种的性别差异
- 批准号:
10757580 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别: