Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
基本信息
- 批准号:10414131
- 负责人:
- 金额:$ 42.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenine Nucleotide TranslocaseAffectAgingAnimalsAreaAutophagocytosisBehavioralBioenergeticsCause of DeathCell DeathCellsChargeChildChronic progressive external ophthalmoplegiaClinicalCytosolDataDefectDegenerative DisorderDiseaseEquilibriumExperimental ModelsFRAP1 geneFunctional disorderFutureGene Expression ProfileGenesGenetic TranscriptionGoalsHistologicHumanImpairmentInner mitochondrial membraneInterventionKnock-in MouseLate-Onset DisorderLateralMaintenanceMembraneMissense MutationMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial ProteinsModelingMolecularMusMuscleMuscle WeaknessMutationMyocardiumMyopathyNamesNeuraxisNeuromuscular DiseasesNeuronsNuclearNucleotidesOxidative PhosphorylationOxidative StressParkinson DiseasePathogenicityPathologyPathway interactionsPeripheralPhenotypePlayProtein ImportProtein IsoformsProteinsResearchRespirationRoleSLC25A4 geneSeizuresSkeletal MuscleSpastic ParaplegiaSpinocerebellar AtaxiasStressSuppressor-Effector T-LymphocytesSurfaceSyndromeTOM translocaseTestingUbiquitinationValidationVariantYeastsagedcerebral atrophyfrontotemporal lobar dementia-amyotrophic lateral sclerosishearing impairmentinsightmitochondrial dysfunctionmouse modelmuscle formmutantneuromechanismneuromuscularnovelpreferencepsychiatric symptomreceptorrelating to nervous systemsuccesstooltranslocaseubiquitin-protein ligaseyoung adult
项目摘要
Ant1 is the muscle/heart/central nervous system (CNS) isoform of adenine nucleotide translocase that is
primarily involved in ATP/ADP exchange across the inner mitochondrial membrane (IMM). An increasing
number of missense mutations in Ant1 are found to cause dominant diseases that affect skeletal muscle and
the central nervous system. These diseases are commonly manifested by fractional mtDNA deletions and mild
bioenergetic defects. The mechanism of neuromuscular damage in the diseases is poorly understood.
Interestingly, our recent studies in yeast and cultured human cells suggested that the mutant Ant1 is misfolded.
This leads to cell death by a novel mechanism that we named mitochondrial Precursor Overaccumulation
Stress (mPOS). mPOS is characterized by the toxic accumulation and aggregation of un-imported
mitochondrial preproteins in the cytosol. These findings led to the central hypothesis that the mutant Ant1
primarily affects mitochondrial protein import. This results in mPOS in the cytosol, which plays an important
role in inducing neural and muscular degeneration. Fractional mtDNA deletions occur independent of
nucleotide transport activity, likely as a secondary damage collateral to reduced mitochondrial protein import.
In this application, we propose to directly test this hypothesis in mouse models. We successfully generated
knock-in (KI) mouse lines expressing misfolded variants of Ant1. Preliminary studies indicated that these mice
develop phenotypes consistent with neural and muscular degeneration. In Specific Aim 1, we will use these
unique experimental models to test the hypothesis that misfolded Ant1 induces neural and muscular
degeneration and mtDNA instability independent of nucleotide transport. In Specific Aim 2, we will use various
experimental tools that we developed in yeast, cultured human cells and the Ant1-KI mice to test the
hypothesis that the misfolded Ant1 (or Aac2 in yeast) causes structural and functional damage to the
mitochondrial protein import machinery and induces mPOS in the cytosol. In Specific Aim 3, we will determine
the mechanisms that protect cells against Ant1-induced protein import stress and mPOS. Success of the
project will establish a mouse model of protein import stress associated with mPOS. Particularly, validation of
the mPOS model would help reconciling the mitochondrial and proteostatic pathways in many neural and
muscular degenerative diseases. Finally, the results could have important implications for the understanding
and therapy of Ant1-induced diseases, as well as many other clinical conditions that directly or indirectly affect
mitochondrial protein import.
Ant1 是腺嘌呤核苷酸转位酶的肌肉/心脏/中枢神经系统 (CNS) 亚型,
主要参与跨线粒体内膜 (IMM) 的 ATP/ADP 交换。越来越多的
Ant1 中的大量错义突变被发现会导致影响骨骼肌和骨骼肌的显性疾病
中枢神经系统。这些疾病通常表现为线粒体 DNA 部分缺失和轻度
生物能缺陷。这些疾病中神经肌肉损伤的机制尚不清楚。
有趣的是,我们最近对酵母和培养的人类细胞的研究表明,突变体 Ant1 是错误折叠的。
这通过一种我们称之为线粒体前体过度积累的新机制导致细胞死亡
压力(mPOS)。 mPOS的特点是未输入的有毒物质积累和聚集
细胞质中的线粒体前蛋白。这些发现引出了一个中心假设:突变体 Ant1
主要影响线粒体蛋白质的输入。这导致细胞质中产生 mPOS,它起着重要的作用
诱导神经和肌肉变性的作用。部分 mtDNA 缺失的发生独立于
核苷酸转运活性,可能是线粒体蛋白质输入减少的继发性损伤。
在此应用中,我们建议在小鼠模型中直接检验这一假设。我们成功生成了
表达 Ant1 错误折叠变体的敲入 (KI) 小鼠系。初步研究表明这些小鼠
发展出与神经和肌肉退化一致的表型。在具体目标 1 中,我们将使用这些
独特的实验模型来测试错误折叠的 Ant1 诱导神经和肌肉的假设
与核苷酸运输无关的变性和 mtDNA 不稳定性。在具体目标 2 中,我们将使用各种
我们在酵母、培养的人类细胞和 Ant1-KI 小鼠中开发的实验工具,用于测试
假设错误折叠的 Ant1(或酵母中的 Aac2)会导致结构和功能损伤
线粒体蛋白输入机器并在细胞质中诱导 mPOS。在具体目标 3 中,我们将确定
保护细胞免受 Ant1 诱导的蛋白质输入应激和 mPOS 的机制。的成功
项目将建立与 mPOS 相关的蛋白质输入应激小鼠模型。特别是,验证
mPOS 模型将有助于协调许多神经和蛋白质通路中的线粒体和蛋白质抑制途径。
肌肉退行性疾病。最后,结果可能对理解具有重要意义
Ant1诱发的疾病以及许多其他直接或间接影响的临床病症的治疗和治疗
线粒体蛋白输入。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Jie Chen其他文献
Xin Jie Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Jie Chen', 18)}}的其他基金
A novel mitochondria-to-lysosome stress signaling pathway in degenerative disease and aging
退行性疾病和衰老中一种新的线粒体到溶酶体应激信号通路
- 批准号:
10722759 - 财政年份:2023
- 资助金额:
$ 42.51万 - 项目类别:
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10247517 - 财政年份:2020
- 资助金额:
$ 42.51万 - 项目类别:
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10624824 - 财政年份:2020
- 资助金额:
$ 42.51万 - 项目类别:
Mechanism of Mitochondria-induced Progressive Muscle Wasting
线粒体诱导进行性肌肉萎缩的机制
- 批准号:
10348145 - 财政年份:2019
- 资助金额:
$ 42.51万 - 项目类别:
Mechanism of Mitochondria-induced Progressive Muscle Wasting
线粒体诱导进行性肌肉萎缩的机制
- 批准号:
10539303 - 财政年份:2019
- 资助金额:
$ 42.51万 - 项目类别:
Mechanism of Mitochondria-induced Progressive Muscle Wasting
线粒体诱导进行性肌肉萎缩的机制
- 批准号:
10062793 - 财政年份:2019
- 资助金额:
$ 42.51万 - 项目类别:
Aging-related mitochondrial degeneration and degenerative diseases
与衰老相关的线粒体变性和退行性疾病
- 批准号:
8277247 - 财政年份:2005
- 资助金额:
$ 42.51万 - 项目类别:
Aging-related mitochondrial degeneration and degenerative diseases
与衰老相关的线粒体变性和退行性疾病
- 批准号:
8068349 - 财政年份:2005
- 资助金额:
$ 42.51万 - 项目类别:
Aging-related mitochondrial degeneration and degenerative diseases
与衰老相关的线粒体变性和退行性疾病
- 批准号:
8459464 - 财政年份:2005
- 资助金额:
$ 42.51万 - 项目类别:
Aging-related mitochondrial degeneration and degenerative diseases
与衰老相关的线粒体变性和退行性疾病
- 批准号:
8664318 - 财政年份:2005
- 资助金额:
$ 42.51万 - 项目类别:
相似国自然基金
腺嘌呤核苷酸转位酶2的下调抑制线粒体ATP合成介导纳米塑料致大脑神经元铁死亡的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10624824 - 财政年份:2020
- 资助金额:
$ 42.51万 - 项目类别:
Novel mechanism of neural and muscular degeneration
神经和肌肉退化的新机制
- 批准号:
10247517 - 财政年份:2020
- 资助金额:
$ 42.51万 - 项目类别:
Characterization of Adenine Nucleotide Translocase (ANT) and Actin-Interacting Protein 1 (AIP1) as Protectors Against Cigarette Smoke
腺嘌呤核苷酸转位酶 (ANT) 和肌动蛋白相互作用蛋白 1 (AIP1) 作为香烟烟雾保护剂的表征
- 批准号:
9917578 - 财政年份:2019
- 资助金额:
$ 42.51万 - 项目类别:
Mechanism of age-dependent neuromuscular degeneration caused by protein misfolding on the inner mitochondrial membrane
线粒体内膜蛋白质错误折叠引起的年龄依赖性神经肌肉变性的机制
- 批准号:
10217989 - 财政年份:2018
- 资助金额:
$ 42.51万 - 项目类别:
Mechanism of age-dependent neuromuscular degeneration caused by protein misfolding on the inner mitochondrial membrane
线粒体内膜蛋白质错误折叠引起的年龄依赖性神经肌肉变性的机制
- 批准号:
9980255 - 财政年份:2018
- 资助金额:
$ 42.51万 - 项目类别: