3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
基本信息
- 批准号:10635210
- 负责人:
- 金额:$ 57.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAwardBrainCalibrationCancer PatientCell NucleusCharacteristicsClinicalCollaborationsComputer softwareDataDepositionDetectionDevelopmentDoseEnsureFundingGamma RaysGoalsGrantImageIndustryInpatientsLeadLegal patentLocationMapsMarylandMeasuresMethodsMonitorMorphologic artifactsNormal tissue morphologyPatientsPelvisPhotonsPilot ProjectsProceduresProcessProstate Cancer therapyProton RadiationProtonsPublicationsRadiationRadiation therapyRectumResearchSignal TransductionSystemTechniquesThree-Dimensional ImageTissuesToxic effectTranslatingTranslationsTreatment EfficacyUncertaintyUnited States National Institutes of HealthWorkclinical translationcomputerized data processingimage guidedimage processingimage reconstructionimaging modalityimaging systemimprovedin vivoin vivo imaging systemindustry partnerinnovationnovelpreventprostate radiotherapyproton beamprototypequality assurancerapid growthrectalsimulationsuccesstherapy developmenttumor
项目摘要
ABSTRACT: This proposal aims to address the long-term challenge of range uncertainties in proton
radiotherapy (RT) by developing a novel 3D prompt gamma imaging (PGI) system for in vivo dose verification.
Proton RT can potentially achieve better normal tissue sparing than photon RT due to proton beams’ finite
range and Bragg peak (BP) in dose deposition. The number of proton centers in the US has increased by over
40% in the past 4 years. However, despite the promise and rapid growth of proton RT, its treatment efficacy is
severely limited by uncertainties in the proton beam range (i.e., the precise location of BP in the patient) arising
from daily patient setup errors, anatomic change, and dose calculation uncertainties. To account for this,
larger-than-desirable treatment margins (potentially>1cm) are added around the tumor in practice to ensure
adequate dose coverage. These margins significantly increase the dose to adjacent healthy tissues, leading to
an increase in radiation-induced toxicities. Concerns of increased toxicities, in turn, constrain the dose that can
be prescribed to the tumor and thus limit the tumor control we can achieve. Therefore, there is a significant and
critical need to overcome beam range uncertainties so that the true potential of proton RT can be fully
exploited. PGI has become a promising technique to verify and minimize range uncertainties by imaging the
prompt gamma (PG) signals emitted from the non-elastic proton-nucleus interactions during proton RT. In our
prior NIH-funded research, we developed a prototype PGI system that demonstrated the world's first 3D
images of PG emission from clinical proton beams with a range shift detection accuracy of ~3 mm. Despite the
early success, our system had several critical barriers that prevented it from being translated, including limited
count rate of the Compton camera, crude PG image quality with artifacts and severe distortion due to parallax,
and lack of dose estimation. In this grant, we will revamp the entire system with both hardware and software
innovations to overcome current barriers to achieve high precision 3D dose verification. The following aims will
be pursued: (1) develop, integrate and synchronize a quad-camera PGI system into the proton RT machine,
(2) develop novel image processing and reconstruction methods to achieve high-precision 3D dose verification,
and (3) perform a pilot patient study to evaluate its clinical impact. We have formed a top-tier academic
(Maryland) and industry (Varian) partnership with complementary expertise and a track record of collaboration
to ensure the success of the project. Our collaborative development and translation of the PGI system will be a
major step toward fulfilling our long-term goal of improving the efficacy of proton RT by minimizing its range
uncertainties. Our PGI system will be the first to provide truly 3D online dose verification during proton
treatment delivery, which can lead to a paradigm shift toward high-precision proton RT. This breakthrough will
unleash the full potential of proton RT to use minimal treatment margin to achieve optimal tumor control with
reduced toxicities for the growing number of cancer patients treated by proton RT in the US and worldwide.
摘要:该提案旨在解决质子范围不确定性的长期挑战
通过开发用于体内剂量验证的新型 3D 即时伽马成像 (PGI) 系统来进行放射治疗 (RT)。
由于质子束的有限性,质子放疗可能比光子放疗实现更好的正常组织保护
剂量沉积的范围和布拉格峰(BP)美国的质子中心数量增加了超过。
过去 4 年增长了 40% 然而,尽管质子放疗前景广阔且增长迅速,但其治疗效果却很差。
受到质子束范围(即患者血压的精确位置)不确定性的严重限制
来自日常患者设置错误、解剖变化和剂量不确定性计算。
在实践中,在肿瘤周围添加大于所需的治疗边缘(可能>1cm),以确保
足够的剂量覆盖范围显着增加了邻近健康组织的剂量,从而导致
对辐射引起的毒性增加的担忧反过来又限制了可能的剂量。
因此,对肿瘤进行处方,从而限制了我们可以实现的肿瘤控制。
迫切需要克服射束范围的不确定性,以便充分发挥质子 RT 的真正潜力
PGI 已成为一种通过成像来验证和最小化范围不确定性的有前途的技术。
在我们的质子 RT 过程中,非弹性质子-核相互作用发出瞬发伽马 (PG) 信号。
在 NIH 资助的研究之前,我们开发了一个原型 PGI 系统,展示了世界上第一个 3D
临床质子束的 PG 发射图像,距离偏移检测精度为 ~3 mm。
早期的成功,我们的系统有几个关键障碍阻碍了它的翻译,包括有限的
康普顿相机的计数率,粗糙的 PG 图像质量,由于视差而存在伪影和严重失真,
以及缺乏剂量估计 在这笔拨款中,我们将通过硬件和软件改造整个系统。
克服当前障碍以实现高精度 3D 剂量验证的创新将实现以下目标。
追求:(1)开发、集成并同步四相机PGI系统到质子RT机器中,
(2) 开发新颖的图像处理和重建方法以实现高精度3D剂量验证,
(3) 进行一项试点患者研究以评估其临床影响。我们已经组建了顶级学术机构。
(马里兰州)和行业(瓦里安)的伙伴关系,具有互补的专业知识和良好的合作记录
为了确保该项目的成功,我们将共同开发和翻译 PGI 系统。
朝着实现通过最小化质子放疗范围来提高质子放疗功效的长期目标迈出的重要一步
我们的 PGI 系统将是第一个在质子期间提供真正的 3D 在线剂量验证的系统。
治疗交付,这可能会导致向高精度质子 RT 的范式转变。
充分发挥质子放疗的潜力,以最小的治疗裕度实现最佳的肿瘤控制
在美国和世界范围内,越来越多接受质子放疗的癌症患者的毒性降低。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerimy C. Polf其他文献
Multi-Layer Recurrent Neural Networks for the Classification of Compton Camera Based Imaging Data for Proton Beam Cancer Treatment
用于质子束癌症治疗的基于康普顿相机的成像数据分类的多层循环神经网络
- DOI:
- 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Joseph Clark;Anaise Gaillard;Justin Koe;Nithya Navarathna;Daniel J. Kelly;Matthias K. Gobbert;Carlos A. Barajas;Jerimy C. Polf - 通讯作者:
Jerimy C. Polf
Jerimy C. Polf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerimy C. Polf', 18)}}的其他基金
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
- 批准号:
10760947 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 57.57万 - 项目类别: