Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
基本信息
- 批准号:10635323
- 负责人:
- 金额:$ 34.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AnticoagulantsApplied ResearchAtrial FibrillationAtrial FlutterCalibrationCollaborationsComparative Effectiveness ResearchComplexConfounding Factors (Epidemiology)DataDipeptidyl PeptidasesDocumentationDrug PrescriptionsEffectivenessGrantHealthHealthcareMachine LearningMeasuresMedicalMedicareMedicineMethodsModelingNon-Insulin-Dependent Diabetes MellitusObservational StudyOralOutcomePatientsPharmaceutical PreparationsPopulationPredispositionProbabilityProcessPropertyResearchResearch PersonnelResortRisk FactorsSafetyScheduleSchizophreniaStatistical Data InterpretationStatistical MethodsStatistical ModelsTherapeuticUncertaintyVariantWorkcare outcomescomparative effectiveness studycomparative treatmentcomplex datacomputing resourcesdata resourcedesignepidemiology studyhazardhealth care deliveryhigh dimensionalityimprovedinhibitorinstrumentmachine learning methodmodel buildingmultidimensional datanovelrandom forestsafety studysoftware developmentstatistical learningstatisticstreatment effecttreatment grouptreatment strategyuser friendly software
项目摘要
Project Summary
Comparative effectiveness research (CER) in medicine is commonly conducted to discover and provide infor-
mation on possible differences between alternative drugs or treatments in their effectiveness and safety. Such
information, if reliable and accurate, can help patients, clinicians, and other healthcare stakeholders to make
better-informed healthcare decisions and improve healthcare delivery and outcomes. However, drawing valid
and relevant inferences about treatment effects from observational studies involves effort and expertise from
both subject-matter researchers and statisticians. On one hand, causal inference relies on structural assump-
tions. Two prominent classes of such assumptions are unconfoundedness or instrument variable (IV) assump-
tions. On the other hand, granted the structural assumptions, causal inference also requires statistical modeling
and estimation of population properties and associations from empirical data. The problem of statistical learning
and inference can be challenging, while allowing a large number of candidate regressors such as main effects
and interactions of covariates. The objective of our research is to develop, evaluate, and disseminate a new
set of theoretically rigorous, numerically automated, and practically useful methods of statistical learning and
inference for estimating treatment effects in CER with complex, high-dimensional data. Three specific aims
are (1) high-dimensional inference about population and subpopulation average treatment effects under uncon-
foundedness with multi-valued treatments, (2) high-dimensional inference about local average treatment effects
and IV-dependent average treatment effects on the treated with multi-valued instruments and treatments, and
(3) high-dimensional inference about average treatment effects such as contrasts between survival and hazard
probabilities with longitudinal and survival data. We will investigate applications of the new methods to several
comparative effectiveness and safety studies including a recent study on comparative treatment strategies in
schizophrenia and an ongoing project to evaluate the therapeutic exchangeability of same-class drugs, for ex-
ample, direct oral anticoagulants among patients with atrial fibrillation or atrial flutter or dipeptidyl peptidase-4
inhibitors among patients with type 2 diabetes, while exploiting IVs created by the design of the Medicare pre-
scription drug benefit. We will develop and publicly release user-friendly computer software including transparent
documentation for direct implementation of the new methods.
项目概要
医学中的比较有效性研究(CER)通常是为了发现和提供信息
替代药物或治疗方法在有效性和安全性方面可能存在的差异。这样的
如果信息可靠且准确,可以帮助患者、临床医生和其他医疗保健利益相关者做出
更明智的医疗保健决策并改善医疗保健服务和结果。然而,绘图有效
观察性研究中关于治疗效果的相关推论涉及来自以下机构的努力和专业知识:
主题研究人员和统计学家。一方面,因果推理依赖于结构假设
系统蒸发散。此类假设的两个突出类别是无混杂性或工具变量(IV)假设
系统蒸发散。另一方面,考虑到结构假设,因果推断也需要统计建模
以及根据经验数据估计人口属性和关联。统计学习的问题
推理可能具有挑战性,同时允许大量候选回归变量,例如主效应
和协变量的相互作用。我们研究的目标是开发、评估和传播一种新的
一套理论上严谨、数字自动化且实用的统计学习方法
使用复杂的高维数据推断 CER 中的治疗效果。三个具体目标
是(1)关于未控制下人群和亚人群平均治疗效果的高维推断
多值治疗的基础,(2)局部平均治疗效果的高维推断
对使用多值仪器和治疗进行治疗的依赖于 IV 的平均治疗效果,以及
(3) 关于平均治疗效果的高维推断,例如生存与危险之间的对比
纵向和生存数据的概率。我们将研究新方法在几个方面的应用
比较有效性和安全性研究,包括最近一项关于比较治疗策略的研究
精神分裂症和一个正在进行的项目,旨在评估同类药物的治疗可互换性,例如
房颤或心房扑动患者充足的直接口服抗凝剂或二肽基肽酶 4
2 型糖尿病患者中使用抑制剂,同时利用 Medicare pre-
处方药的好处。我们将开发并公开发布用户友好的计算机软件,包括透明的
直接实施新方法的文档。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiqiang Tan其他文献
Zhiqiang Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于席夫碱金属配合物的有机半导体构筑及性质和光伏应用研究
- 批准号:22379061
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
快速高效多标免疫荧光原位成像新技术及其肿瘤精准免疫治疗应用研究
- 批准号:82373456
- 批准年份:2023
- 资助金额:60 万元
- 项目类别:面上项目
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于新型双功能活性肽PTIP治疗AMI的应用研究
- 批准号:82304365
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向决策策略优化的绩效归因分析及其在产业平台经济中的应用研究
- 批准号:72371091
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
相似海外基金
Resolution of inflammation and atrial fibrillation
炎症和心房颤动的解决
- 批准号:
10679718 - 财政年份:2023
- 资助金额:
$ 34.66万 - 项目类别:
Cardioembolism as a Mechanism of Central Retinal Artery Occlusion
心源性栓塞作为视网膜中央动脉闭塞的机制
- 批准号:
10525030 - 财政年份:2022
- 资助金额:
$ 34.66万 - 项目类别:
Cardioembolism as a Mechanism of Central Retinal Artery Occlusion
心源性栓塞作为视网膜中央动脉闭塞的机制
- 批准号:
10773701 - 财政年份:2022
- 资助金额:
$ 34.66万 - 项目类别:
6th Annual Comprehensive Cardiovascular Center (CCVC) Symposium: Focus on Cardiovascular Electrophysiology
第六届综合心血管中心(CCVC)年度研讨会:聚焦心血管电生理学
- 批准号:
9397864 - 财政年份:2017
- 资助金额:
$ 34.66万 - 项目类别:
Myocardial redox status, catecholamine metabolism and post-operative arrhythmia
心肌氧化还原状态、儿茶酚胺代谢与术后心律失常
- 批准号:
9295043 - 财政年份:2016
- 资助金额:
$ 34.66万 - 项目类别: