Molecular mechanisms of NKX2.2 function in adult human beta cells
成人β细胞中NKX2.2功能的分子机制
基本信息
- 批准号:10603492
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdultAlpha CellBeta CellBiologyCRISPR/Cas technologyCell NucleusCell SeparationCell physiologyCellular biologyChromatinChronicCollaborationsCommunicationCommunitiesD CellsDNA BindingDevelopmentDiabetes MellitusEnvironmentEventFellowshipFoundationsFunctional disorderFundingFutureGene ExpressionGene Expression ProfilingGenesGeneticGenetic TranscriptionHarvestHomeodomain ProteinsHormonesHumanImmunodeficient MouseIn VitroInsulinIslet CellIslets of LangerhansKnock-outLeadershipMaintenanceMediatingMicrofluidicsMolecularMusMutationNon-Insulin-Dependent Diabetes MellitusParacrine CommunicationPathway interactionsPatientsPhenotypePhysiciansPlayProteinsResearchResearch PersonnelRoleScientistSignal TransductionStructure of beta Cell of isletTestingTissue-Specific Gene ExpressionTrainingTranscriptTranscription CoactivatorTranscription RepressorTranscriptional RegulationTransplantationUnited States National Institutes of Healthanterior chamberbaseblood glucose regulationcareercareer developmentdiabetes pathogenesisdifferential expressionendocrine pancreas developmentendoplasmic reticulum stresseye chambergene functiongene repressionhomeodomainhuman tissueimprovedin vivoinnovationinsightinsulin regulationinsulin secretioninterestisletknock-downlive cell imagingloss of functionmouse modelmultiple omicsneonatal diabetes mellitusnovel therapeutic interventionsingle nucleus RNA-sequencingskillstranscription factortranscriptome
项目摘要
PROJECT SUMMARY. Loss of pancreatic β cell function and/or mass is central to the development of type 2
diabetes (T2D). Understanding how β cell function is normally regulated in adult human islets will help
elucidate mechanisms of dysfunction in T2D, which are not well understood. A large body of work in mouse
models suggests that the islet-enriched transcription factor (TF) NKX2.2 is a critical regulator of β cell
development and plays a role in the maintenance of adult β cell function. Further, patients with loss-of-function
NKX2-2 mutations have neonatal diabetes, highlighting an important role of NKX2.2 in human islet
development. However, the role of NKX2.2 in adult human β cells remain undefined. Interestingly, we found
increased insulin secretion from primary human pseudoislets following global NKX2-2 knockdown, suggesting
different roles of NKX2.2 across species and developmental stages. We hypothesize that, in adult human
islets, NKX2.2 regulates insulin secretion via transcriptional repression of β cell-intrinsic pathways. To test this
hypothesis, we will first determine the role of NKX2.2 in adult human islet function in a β cell-specific manner.
Using florescence-activated cell sorting and CRISPR/Cas9 technology, we will perform targeted knockout of
NKX2-2 in adult β cells in primary human pseudoislets. We will assess β cell intracellular Ca2+ signaling events
and function in vitro using an integrated live cell imaging and microfluidic platform. To evaluate the impact of
chronic loss of NKX2.2, we will examine pseudoislet function in vivo following transplantation into
immunodeficient mice. Results of this aim will determine the impact of NKX2.2 on β cell-intrinsic pathways that
lead to insulin secretion. Secondly, we will define molecular mechanisms of NKX2.2 function in adult human β
cells using a single nucleus (sn)RNA-seq+ ATAC-seq multiome approach on the same nucleus. snRNA-seq
will determine if NKX2.2 functions as a transcriptional repressor of insulin secretory machinery in β cells. In
combination, snATAC-seq will reveal how NKX2.2 alters chromatin accessibility to regulate the β cell
transcriptome. To study the impact of chronic NKX2-2 knockout on β cell phenotype and function, we will
analyze harvested pseudoislet transplants for changes in proteins corresponding to top differentially expressed
genes of interest. This aim will provide mechanistic insight into how NKX2.2 regulates adult human β cell gene
transcription and function at the chromatin and transcript level. Overall, these studies will reveal molecular
mechanisms of NKX2.2 function in adult human β cells, with implications for new therapeutic approaches to
improve β cell function in T2D. Training under this fellowship will be enhanced by a rich environment, including
a large community of islet biology investigators under the NIH-funded Vanderbilt Diabetes Research and
Training Center, collaborations with experts in the field, and a variety of opportunities to promote career
development, leadership, and scientific communication. Together, the proposed research, training plan, and
environment will provide a strong foundation on which to base a career as a physician-scientist.
项目摘要。胰腺 β 细胞功能和/或质量的丧失对于 2 型的发展至关重要。
了解成人胰岛中 β 细胞功能的正常调节方式将有所帮助。
阐明 T2D 功能障碍的机制,目前在小鼠中尚未得到充分了解。
模型表明富含胰岛的转录因子 (TF) NKX2.2 是 β 细胞的关键调节因子
发育并在维持成人 β 细胞功能方面发挥作用。 此外,对于功能丧失的患者。
NKX2-2突变导致新生儿糖尿病,凸显NKX2.2在人类胰岛中的重要作用
然而,NKX2.2 在成人 β 细胞中的作用仍不清楚。
在全局 NKX2-2 敲除后,原代人伪胰岛的胰岛素分泌增加,表明
我们捕捉到了 NKX2.2 在不同物种和发育阶段的不同作用。
在胰岛中,NKX2.2 通过转录抑制 β 细胞内在途径来调节胰岛素分泌。
假设,我们将首先以 β 细胞特异性方式确定 NKX2.2 在成人胰岛功能中的作用。
利用荧光激活细胞分选和CRISPR/Cas9技术,我们将进行靶向敲除
原代人伪胰岛成人 β 细胞中的 NKX2-2 我们将评估 β 细胞胞内 Ca2+ 信号转导事件。
并使用集成的活细胞成像和微流体平台进行体外功能评估的影响。
NKX2.2 的慢性丧失,我们将在移植到体内后检查体内的假胰岛功能
该目标的结果将确定 NKX2.2 对 β 细胞内在途径的影响
其次,我们将定义 NKX2.2 在成人β中发挥作用的分子机制。
在同一核上使用单核 (sn)RNA-seq+ ATAC-seq 多组方法的细胞。
将确定 NKX2.2 是否充当 β 细胞中胰岛素分泌机制的转录抑制因子。
结合起来,snATAC-seq 将揭示 NKX2.2 如何改变染色质可及性来调节 β 细胞
为了研究慢性 NKX2-2 敲除对 β 细胞表型和功能的影响,我们将
分析收获的伪胰岛移植物中与顶部差异表达相对应的蛋白质的变化
该目标将为 NKX2.2 如何调节成人 β 细胞基因提供机制见解。
总的来说,这些研究将揭示染色质和转录水平的转录和功能。
NKX2.2 在成人 β 细胞中的功能机制,对新的治疗方法具有影响
改善 T2D 中的 β 细胞功能将通过丰富的环境得到加强,包括
NIH 资助的范德比尔特糖尿病研究中心下的一个由胰岛生物学研究人员组成的大型社区
培训中心、与该领域专家的合作以及各种促进职业发展的机会
发展、领导力和科学交流,以及拟议的研究、培训计划和。
环境将为医生科学家的职业生涯奠定坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yasminye D Pettway其他文献
Yasminye D Pettway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Epigenetic regulation of autophagy and stemness of MSCs in skeletal aging
骨骼衰老过程中间充质干细胞自噬和干性的表观遗传调控
- 批准号:
10901048 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Regulation of the Melanocyte Lineage by the AP2 Transcription Factor Family
AP2 转录因子家族对黑素细胞谱系的调节
- 批准号:
10607024 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别: