Development of a Novel Whole Genome Sequencing-based Platform for Rapid Identification and Antimicrobial Profiling of Uropathogens
开发基于全基因组测序的新型平台,用于尿路病原体的快速识别和抗菌谱分析
基本信息
- 批准号:10382740
- 负责人:
- 金额:$ 30.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAlgorithmsAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceAntimicrobial susceptibilityBacteriaBacterial DNABloodBlood specimenCaringCellsCessation of lifeCharacteristicsClinicalCollectionCommunicable DiseasesCoupledCytolysisDNADataData AnalysesData CompromisingDetergentsDevelopmentDiagnosisDiagnosticDiagnostic SensitivityEconomic BurdenEmergency department visitEnsureEvidence based treatmentGenomicsGoalsHealthHospitalizationHospitalsHourHumanInfectionInfective cystitisInpatientsInterventionLength of StayLifeMachine LearningMedicalMembraneMicrobiologyModificationMolecularMorbidity - disease rateMorphologyMulti-Drug ResistanceNucleotidesPatient CarePatientsPerformancePhasePhysiciansPreparationProcessPropertyProtocols documentationQuality of CareRe 80Reaction TimeRecoveryResearchResistance profileResolutionRiskSamplingSourceTechnologyTestingTimeUrinary tract infectionUrineUropathogenViscosityantimicrobialbasecare outcomesclinically actionableclinically relevantcostcost effectivedata qualitydesigndiagnostic platformdiagnostic tooldiagnostic valueexperiencegenome sequencinghigh riskhuman DNAimprovedin-vitro diagnosticsinfection managementmortalitynanoporenovelnovel diagnosticspathogenpathogenic bacteriaprocess optimizationresearch clinical testingsample collectionstandard of caretargeted treatmentvalidation studieswhole genome
项目摘要
Complicated urinary tract infections are severe or life-threatening infections that extend beyond a simple bladder
infection and occur most frequently in hospitalized patients. There are over 2.8 million cases of complicated
urinary tract infections in the U.S. each year, with 20% of cases progressing to urosepsis, leading to nearly
150,000 deaths each year. Effective management of complicated urinary tract infections requires the rapid
identification of the causative bacterial pathogen(s) and the associated antibiotic resistance profile. The current
standard of care, however, is urine culture, which requires 2-3 days from specimen collection until actionable
information to guide patient treatment is generated. Hence, there is an urgent need for diagnostic tools that will
allow for the rapid identification of uropathogens and their antimicrobial resistance/sensitivity profile(s). To
address this unmet need, Day Zero Diagnostics (DZD) is developing a diagnostic workflow that leverages whole
genome sequencing and machine learning to deliver high resolution species identification and antimicrobial
resistance and susceptibility profiling from a patient sample without the need for urine culture. These data will
guide evidence-based treatment decisions to improve patient care. The aims of this proposal are to (1)
demonstrate ultra-high enrichment of bacterial DNA from a diverse range of species from urine samples and (2)
optimize a sample preparation pipeline to deliver an actionable result in six hours or less, a clinically relevant
timeframe for complicated urinary tract infection. The proposed Specific Aims, with quantifiable target metrics,
are designed to demonstrate proof-of-concept in advance of the development of a commercial in vitro diagnostic.
Upon Phase I completion, Phase II will focus on optimizing the workflow, expanding test capabilities, and
analytical and clinical validation studies.
复杂性尿路感染是指超出简单膀胱范围的严重或危及生命的感染
感染,最常见于住院患者。复杂病例超过280万例
美国每年都会发生尿路感染,其中 20% 的病例进展为尿脓毒症,导致近
每年有 15 万人死亡。复杂尿路感染的有效治疗需要快速
鉴定致病细菌病原体和相关的抗生素耐药性。目前的
然而,护理标准是尿培养,从标本采集到可采取行动需要 2-3 天
生成指导患者治疗的信息。因此,迫切需要能够诊断的工具
允许快速识别尿路病原体及其抗菌药物耐药性/敏感性特征。到
为了解决这一未满足的需求,零日诊断 (DZD) 正在开发一个诊断工作流程,利用整个
基因组测序和机器学习可提供高分辨率物种识别和抗菌
无需尿培养即可从患者样本中进行耐药性和敏感性分析。这些数据将
指导循证治疗决策以改善患者护理。该提案的目的是 (1)
证明尿样中多种物种的细菌 DNA 具有超高富集度,并且 (2)
优化样品制备流程,在六小时或更短的时间内提供可操作的结果,这是临床相关的
复杂性尿路感染的时间表。拟议的具体目标以及可量化的目标指标,
旨在在开发商业体外诊断之前展示概念验证。
第一阶段完成后,第二阶段将重点优化工作流程、扩展测试能力和
分析和临床验证研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Nicole Billings其他文献
Amanda Nicole Billings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
- 批准号:61070023
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
- 批准号:
10742435 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
Addressing Algorithmic Unreliability and Dataset Shift in EHR-based Risk Prediction Models
解决基于 EHR 的风险预测模型中的算法不可靠性和数据集转移
- 批准号:
10679376 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
HORMAD-specific TGF-beta resistant memory T cells for treatment of patients with Gastro-esophageal Cancer
HORMAD 特异性 TGF-β 耐药性记忆 T 细胞用于治疗胃食管癌患者
- 批准号:
10731407 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别: