Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
基本信息
- 批准号:10470751
- 负责人:
- 金额:$ 3.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2024-02-01
- 项目状态:已结题
- 来源:
- 关键词:AddressAmidesAnabolismAnti-Infective AgentsAntibiotic ResistanceAntibioticsAntineoplastic AgentsAreaBiochemicalBiological AssayCatalytic DomainCenters for Disease Control and Prevention (U.S.)Cessation of lifeChimeric ProteinsClinicalComplexCyclizationCytochrome P450Deoxy SugarsDevelopmentDirected Molecular EvolutionEconomicsEngineeringEnvironmentEnzymesErythromycinEstersEvaluationFamilyGatekeepingGenerationsGenetic TranscriptionHealthHumanHydroxylationImmunomodulatorsIn VitroIndustryInfectionMacrolidesMediatingMetabolic BiotransformationMethodsMixed Function OxygenasesMolecularMolecular MachinesNatural ProductsNaturePathway interactionsPharmaceutical PreparationsPharmacologic SubstancePositioning AttributeProcessProductionPropertyProteinsRare Earth MetalsReagentResearchResistanceRibosomesSeriesSubstrate CyclingSynthesis ChemistrySystemTestingTherapeuticTylosinVariantWorkWorld Health Organizationanalogappendageaqueouscatalystcostdesignflexibilityglobal healthglycosylationglycosyltransferasehigh throughput screeningimprovedinterestmicroorganismmultidisciplinarymutantnovelnovel therapeuticsoxidationpathogenic bacteriapathogenic microbepicromycinpolyketide synthasescaffoldsmall moleculesynthetic enzymetherapeutically effectivetranslation assayvirtualwasting
项目摘要
Proposal Summary
The megasynthases that mediate construction of a vast array of natural products represent some of the most
complex molecular machines in Nature. In the Sherman group, polyketide synthases (PKSs) are of interest from
a multi-disciplinary perspective. PKSs are responsible for the biosynthesis of diverse secondary metabolites of
economic and therapeutic importance including antibiotics, anticancer agents and immune-modulators. Antibiotic
resistance is one of the biggest threats of global health according to the World Health Organization (WHO). The
Centers for Disease Control and Prevention (CDC) showed that in the US alone, it causes more than 2 million
infections and 23,000 deaths a year. These alarming numbers are estimated to continue incrementally every
year, with 10 million estimated deaths worldwide in 2050. For these reasons, we are motivated to utilize PKSs
to facilitate the design and generation of novel antibiotics from the macrolides class to improve the development
of new, effective therapeutics.
A diverse subset of PKSs generate macrocyclic ring systems that are essential for macrolide production, include
pathways from the Pikromycin (Pik), Erythromycin (DEBS) and Tylosin (Tyl) producing microorganisms. In this
project, I will be focusing on the use of synthetic approaches to facilitate assembly of these compounds and
their analogs using biocatalysis and enzyme engineering. The synthesis of diverse polyketide chain elongation
intermediates in conjunction with late-stage biosynthetic machinery (e.g. glycosyltransferases, P450
monooxygenases) facilitates efficient access to a repertoire of novel molecules, which are challenging to
generate using synthetic methods alone. PKS enzymes provide a powerful method to selectively catalyze key
transformations on polyketide chains to generate macrolactones, which can be subsequently converted to novel
macrolide antibiotics.
Previous work in the Sherman lab has revealed that the primary hurdle to applying PKS modules for the
production of diverse macrolactones hinges on the selectivity of the Pik thioesterase (TE) domain. These findings
suggested that the TE functions as a gatekeeper in the processing of unnatural substrates to generate novel
macrocycles. In the proposed research, I plan to (1) Design and synthesize unnatural substrates to explore PKS
selectivity and tolerance toward substrate loading, elongation, and cyclization for the generation of odd-
membered ring macrolactones, (2) Pursue a TE directed evolution approach for improved total turnover, and
expansion of substrate scope to generate new macrolactone products, (3) Apply chemoenzymatic synthesis for
diverse macrolides and determine their bioactivity profile against human bacterial pathogens. These efforts will
be crucial to developing new macrolide antibiotics to control and overcome emerging resistance in human
bacterial pathogens and to improve therapeutic parameters in this important class of anti-infective agents.
提案摘要
介导大量天然产物构建的巨合成酶代表了一些最重要的合成酶。
自然界中复杂的分子机器。在 Sherman 小组中,聚酮合酶 (PKS) 引起了人们的兴趣
多学科的视角。 PKS 负责多种次级代谢产物的生物合成
经济和治疗重要性,包括抗生素、抗癌剂和免疫调节剂。抗生素
据世界卫生组织(WHO)称,耐药性是全球健康的最大威胁之一。这
疾病控制与预防中心 (CDC) 表明,仅在美国,它就导致了超过 200 万人
每年有 23,000 人感染并死亡。这些令人震惊的数字预计每年都会持续增加
年,预计 2050 年全球将有 1000 万人死亡。出于这些原因,我们有动力利用 PKS
促进大环内酯类新型抗生素的设计和生成,以改善开发
新的、有效的疗法。
PKS 的不同子集生成对大环内酯生产至关重要的大环系统,包括
来自产生匹克霉素 (Pik)、红霉素 (DEBS) 和泰乐菌素 (Tyl) 的微生物的途径。在这个
项目中,我将重点关注使用合成方法来促进这些化合物的组装和
它们的类似物使用生物催化和酶工程。多种聚酮化合物链延长的合成
与后期生物合成机器结合的中间体(例如糖基转移酶、P450
单加氧酶)有助于有效地获取一系列新分子,这对于
单独使用合成方法生成。 PKS 酶提供了一种强大的方法来选择性催化关键
聚酮化合物链上的转化生成大环内酯,随后可转化为新型大环内酯
大环内酯类抗生素。
Sherman 实验室之前的工作表明,将 PKS 模块应用于
多种大环内酯的产生取决于 Pik 硫酯酶 (TE) 结构域的选择性。这些发现
表明 TE 在处理非天然底物以产生新的
大环化合物。在拟议的研究中,我计划(1)设计和合成非天然底物来探索 PKS
对底物负载、伸长和环化的选择性和耐受性,以产生奇数
元环大内酯,(2) 追求 TE 定向进化方法以提高总周转率,以及
扩大底物范围以生成新的大环内酯产物,(3)应用化学酶法合成
不同的大环内酯类化合物并确定它们针对人类细菌病原体的生物活性。这些努力将
对于开发新的大环内酯类抗生素以控制和克服人类新出现的耐药性至关重要
细菌病原体并改善这一类重要抗感染药物的治疗参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Luisa Adrover-Castellano其他文献
Maria Luisa Adrover-Castellano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Luisa Adrover-Castellano', 18)}}的其他基金
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10311658 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10674817 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
相似国自然基金
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向琥珀酸脱氢酶的新型酰胺类衍生物的设计合成、杀线虫活性及构效关系研究
- 批准号:32360687
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
烟酰胺类生物氢人工光合成过程研究
- 批准号:22309149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两个直线型酰胺类生物碱的结构优化、构效关系及作用机理研究
- 批准号:32372603
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中国典型地区大气细颗粒物中新型双酰胺类杀虫剂的污染特征及细胞毒性研究
- 批准号:22376190
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 3.91万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10311658 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10674817 - 财政年份:2021
- 资助金额:
$ 3.91万 - 项目类别:
Examination of the Molecular Properties Underlying the Mechanism, Structure, and Specificity of LanB Enzymes Involved in Lanthipeptide Biosynthesis
检查参与羊毛硫肽生物合成的 LanB 酶的机制、结构和特异性的分子特性
- 批准号:
9525480 - 财政年份:2016
- 资助金额:
$ 3.91万 - 项目类别:
Examination of the Molecular Properties Underlying the Mechanism, Structure, and Specificity of LanB Enzymes Involved in Lanthipeptide Biosynthesis
检查参与羊毛硫肽生物合成的 LanB 酶的机制、结构和特异性的分子特性
- 批准号:
9434992 - 财政年份:2016
- 资助金额:
$ 3.91万 - 项目类别: