Discovery and optimization of antifungal acetyl CoA synthetase inhibitors
抗真菌乙酰辅酶A合成酶抑制剂的发现和优化
基本信息
- 批准号:10448463
- 负责人:
- 金额:$ 59.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-09 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATP Citrate (pro-S)-LyaseAcetate-CoA LigaseAcetyl Coenzyme AActive SitesAddressAdenosine MonophosphateAffectAnti-Infective AgentsAntifungal AgentsAspergillosisAzolesBackBacterial MeningitisBindingBiochemicalBiological AssayCandidaCandida albicansCase SeriesCellular AssayChemistryClinicalComplementComplexCryptococcal MeningitisCryptococcusCryptococcus neoformansCrystallizationDevelopmentEnzymesEstersFusariumGenetic studyGoalsHumanIn VitroIndustrial fungicideInfectionLeadLibrariesLifeLinkMammalsMoldsMolecularMorbidity - disease rateMycosesOrganPatientsPersonsPharmaceutical ChemistryPharmaceutical PreparationsPharmacopoeiasPlantsPolyenesRoentgen RaysSaccharomyces cerevisiaeSeriesSourceStructureTestingTimeToxic effectanti-cancerbasecancer celldesigndrug candidatefungushigh throughput screeningin vitro activityin vivoinhibitorinterdisciplinary approachmortalitynanomolarnovelpathogenpathogenic funguspreclinical developmentscaffoldscreeningsmall moleculesmall molecule inhibitor
项目摘要
PROJECT SUMMARY
Recently, we discovered that a small molecule inhibitor of acetyl CoA synthetase (ACS), AR-12, has broad
spectrum fungicidal activity in vitro and promising activity in vivo. Consistent with this broad spectrum of activity,
genetic studies indicate that ACS is essential for viability in multiple fungi (C. albicans, Fusarium, S. cerevisiae).
In contrast, ACS is not essential in mammals. This is likely because, in mammals and plants, the vast majority
of acetyl CoA is derived from ATP-citrate lyase (ACL) and not ACS. The most important exception to this rule is
the cancer cell where ACS is the predominant source of acetyl CoA. Consequently, ACS has emerged as an
anti-cancer target. Although the development of AR-12 stalled, we propose that its target, ACS, remains worthy
of further exploration as the basis for a new class of antifungal drugs.To identify novel inhibitors of fungal ACSs,
we have developed a multi-disciplinary approach based on: 1) two complementary small molecule screening
strategies; 2) the structural characterization ACS-inhibitor complexes from multiple pathogenic fungi: 3) whole
cell assays of ACS function and inhibition, and 4) medicinal chemistry strategies that have already yielded
micromolar inhibitors of ACS. An STD-NMR screen with C. neoformans Acs1 and identified 492 ACS interacting
molecular fragments, of which the vast majority also interacted with multiple fungal ACS enzymes. In Aim 1, we
will further characterize these hits. As a parallel strategy, we adapted our ACS activity assay for high throughput
screening (HTS) with the goal of directly identifying small molecule ACS inhibitors. Our chemistry plan (Aim 2)
is guided, in part, by the hypothesis that molecules mimicking the acetyl adenosine-monophosphate ester
(AcAMP) intermediate are likely to be effective inhibitors. In Aim 2A, we will characterize the acetyl-PO3 binding
pocket by a structure-activity study of AcAMP mimics derived from molecules already crystallized in the active
site of fungal ACSs. Biochemically stable, potent acetyl-PO3 isosteres emerging from this analysis will then be
linked with putative ATP/AMP-binding pocket-targeted fragments to assemble candidate non-nucleoside, bi-
substrate ACS inhibitors. To complement this hypothesis-based strategy, candidate inhibitors will also be
assembled from other strongly interacting fragments and we will optimize inhibitors directly identified in the ACS
activity-based HTS screen (Aims 2B&C). New molecules will be evaluated (Aim 3) with a testing funnel that
includes biochemical characterization of ACS inhibition, antifungal activity against a range of pathogenic fungi,
whole cell assays of on-target activity against ACS, and initial in vitro toxicity/ADME characterization. Our goal
is to identify a lead ACS inhibitor scaffold along with a back-up series for further pre-clinical development as
broad-spectrum antifungal drug candidates.
项目概要
最近,我们发现乙酰辅酶A合成酶(ACS)的小分子抑制剂AR-12具有广泛的应用前景。
具有广谱的体外杀菌活性和有前景的体内活性。与这种广泛的活动相一致,
遗传学研究表明 ACS 对于多种真菌(白色念珠菌、镰刀菌、酿酒酵母)的生存至关重要。
相比之下,ACS 在哺乳动物中并不是必需的。这可能是因为,在哺乳动物和植物中,绝大多数
乙酰 CoA 来源于 ATP-柠檬酸裂解酶 (ACL),而不是 ACS。该规则最重要的例外是
癌细胞中 ACS 是乙酰辅酶 A 的主要来源。因此,ACS 已成为一种
抗癌目标。尽管AR-12的开发陷入停滞,但我们认为其目标ACS仍然值得
进一步探索作为新型抗真菌药物的基础。为了鉴定新型真菌 ACS 抑制剂,
我们开发了一种多学科方法,基于:1)两种互补的小分子筛选
策略; 2) 来自多种病原真菌的 ACS 抑制剂复合物的结构表征:3) 完整
ACS 功能和抑制的细胞测定,以及 4) 已经产生的药物化学策略
ACS 的微摩尔抑制剂。对新型隐球菌 Acs1 进行 STD-NMR 筛选并鉴定出 492 个 ACS 相互作用
分子片段,其中绝大多数还与多种真菌 ACS 酶相互作用。在目标 1 中,我们
将进一步描述这些热门作品的特征。作为并行策略,我们调整了 ACS 活性测定以实现高通量
筛选(HTS),目的是直接鉴定小分子 ACS 抑制剂。我们的化学计划(目标 2)
部分是由模仿乙酰腺苷一磷酸酯的分子这一假设引导的
(AcAMP) 中间体可能是有效的抑制剂。在目标 2A 中,我们将表征乙酰基-PO3 结合
通过对 AcAMP 模拟物进行结构活性研究,该模拟物衍生自已在活性物质中结晶的分子
真菌 ACS 的位点。从该分析中产生的生化稳定、有效的乙酰基-PO3等排物将被
与假定的 ATP/AMP 结合袋靶向片段连接以组装候选非核苷、双
底物 ACS 抑制剂。为了补充这种基于假设的策略,候选抑制剂也将被
由其他强相互作用片段组装而成,我们将优化 ACS 中直接识别的抑制剂
基于活动的 HTS 筛选(目标 2B&C)。将使用测试漏斗评估新分子(目标 3)
包括 ACS 抑制的生化特征、针对一系列病原真菌的抗真菌活性、
针对 ACS 的靶向活性的全细胞测定,以及初始体外毒性/ADME 表征。我们的目标
的目的是确定一个主要的 ACS 抑制剂支架以及用于进一步临床前开发的备用系列
广谱抗真菌候选药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damian J Krysan其他文献
Damian J Krysan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Damian J Krysan', 18)}}的其他基金
Systematic Genetic Analysis of C. albicans CNS Infection
白色念珠菌中枢神经系统感染的系统遗传分析
- 批准号:
10666122 - 财政年份:2023
- 资助金额:
$ 59.36万 - 项目类别:
Hit-to-lead optimization of broad spectrum antifungal phenothiazines
广谱抗真菌吩噻嗪类化合物的命中至先导化合物优化
- 批准号:
10416079 - 财政年份:2021
- 资助金额:
$ 59.36万 - 项目类别:
Hit-to-lead optimization of broad spectrum antifungal phenothiazines
广谱抗真菌吩噻嗪类化合物的命中至先导化合物优化
- 批准号:
10311751 - 财政年份:2021
- 资助金额:
$ 59.36万 - 项目类别:
Discovery and optimization of antifungal acetyl CoA synthetase inhibitors
抗真菌乙酰辅酶A合成酶抑制剂的发现和优化
- 批准号:
10646327 - 财政年份:2021
- 资助金额:
$ 59.36万 - 项目类别:
Discovery and optimization of antifungal acetyl CoA synthetase inhibitors
抗真菌乙酰辅酶A合成酶抑制剂的发现和优化
- 批准号:
10241688 - 财政年份:2021
- 资助金额:
$ 59.36万 - 项目类别:
Genetic and mechanistic analysis of carbon dioxide tolerance in Cryptococcus pathogenesis
隐球菌发病机制中二氧化碳耐受性的遗传和机制分析
- 批准号:
10335205 - 财政年份:2020
- 资助金额:
$ 59.36万 - 项目类别:
Genetic and mechanistic analysis of carbon dioxide tolerance in Cryptococcus pathogenesis
隐球菌发病机制中二氧化碳耐受性的遗传和机制分析
- 批准号:
10548836 - 财政年份:2020
- 资助金额:
$ 59.36万 - 项目类别:
Systematic in vitro and in vivo genetic analysis of C.albicans protein kinases
白色念珠菌蛋白激酶的系统体外和体内遗传分析
- 批准号:
10308519 - 财政年份:2020
- 资助金额:
$ 59.36万 - 项目类别:
Complex haploinsufficiency based genetic analysis of C. albicans pathogenesis
基于复杂单倍体不足的白色念珠菌发病机制的遗传分析
- 批准号:
10300444 - 财政年份:2017
- 资助金额:
$ 59.36万 - 项目类别:
Complex haploinsufficiency based genetic analysis of C. albicans pathogenesis
基于复杂单倍体不足的白色念珠菌发病机制的遗传分析
- 批准号:
10063476 - 财政年份:2017
- 资助金额:
$ 59.36万 - 项目类别:
相似海外基金
Acetate as a Mediator of Hematopoietic Stem Cell Inflammatory Response and Clonal Hematopoiesis
乙酸作为造血干细胞炎症反应和克隆造血的介质
- 批准号:
10464508 - 财政年份:2022
- 资助金额:
$ 59.36万 - 项目类别:
Discovery and optimization of antifungal acetyl CoA synthetase inhibitors
抗真菌乙酰辅酶A合成酶抑制剂的发现和优化
- 批准号:
10646327 - 财政年份:2021
- 资助金额:
$ 59.36万 - 项目类别:
Discovery and optimization of antifungal acetyl CoA synthetase inhibitors
抗真菌乙酰辅酶A合成酶抑制剂的发现和优化
- 批准号:
10241688 - 财政年份:2021
- 资助金额:
$ 59.36万 - 项目类别:
Investigating Mechanisms of Acetyl-CoA Sensing and Its Implications in Non-Alcoholic Fatty Liver Disease
研究乙酰辅酶A传感机制及其在非酒精性脂肪肝中的意义
- 批准号:
10251911 - 财政年份:2020
- 资助金额:
$ 59.36万 - 项目类别:
Investigating Mechanisms of Acetyl-CoA Sensing and Its Implications in Non-Alcoholic Fatty Liver Disease
研究乙酰辅酶A传感机制及其在非酒精性脂肪肝中的意义
- 批准号:
10392510 - 财政年份:2020
- 资助金额:
$ 59.36万 - 项目类别: