Development and Evaluation of Novel Aptamer-based Therapeutics Targeting SARS-CoV-2 in a Physiologically-Relevant Model of Human Airway Epithelium

在人类气道上皮生理相关模型中针对 SARS-CoV-2 的新型适体疗法的开发和评估

基本信息

  • 批准号:
    10449392
  • 负责人:
  • 金额:
    $ 19.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-12 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The impact of SARS-CoV-2 on public health and the global economy cannot be overstated. As of September 28, 2020, 33,224,222 cases and 999,298 deaths worldwide have been linked to this emergent virus. This staggering number continues to grow, with the United States baring disproportionately high rates of morbidity and mortality. The virus targets the respiratory tract, leading to a wide range of clinical outcomes including mild upper respiratory tract illness and severe viral pneumonia with respiratory failure. To date, four SARS-CoV-2 vaccine candidates have entered phase 3 clinical trials and a massive parallel effort has been undertaken to repurpose already FDA-approved drugs for the treatment of COVID-19 or identify compounds with potential therapeutic activity. Despite this effort, remdesivir remains the only approved (with emergency use authorization) direct-acting antiviral for the treatment of COVID-19. Of critical importance: there is currently no vaccine or SARS-CoV-2-specific therapy approved for the prevention or treatment of disease. Furthermore, multiple antivirals may be required to avoid the rapid emergence of resistant SARS-CoV-2 strains. Thus, the development of novel therapeutics targeting SARS-CoV-2 are urgently needed. Infection requires interaction between the viral surface protein, spike (S), and a host protein, ACE2, that is expressed on type II alveolar cells and ciliated cells in the human airway epithelium (HAE), making these cells potentially vulnerable to infection. Thus, our goal is to develop a novel therapeutic that blocks this interaction between spike (on the virus) and ACE2 (on the host cell) to prevent infection and ameliorate disease. Aptamers are short nucleic acid-based sequences that bind with high affinity to their targets. Among other applications, aptamers have been shown to have potent antiviral activity and low toxicity in cell culture. While aptamers were originally made with RNA and DNA, Xeno-Nucleic Acids (XNA: nucleotide analogs with altered sugar, base, or phosphate backbones) have emerged as important new substrates and XNA aptamers often demonstrate enhanced target binding and greater stability compared to RNA and DNA aptamers. Thus, we hypothesize that aptamer technology, and specifically XNA aptamers, can be leveraged to inhibit spike-ACE2 interaction and propose to establish an innovative, in vitro screening platform that can serve to assess the efficacy of such aptamers, or other novel therapeutics, in blocking infection. This platform will utilize SARS-CoV-2 pseudoparticles (allowing work under Biosafety Level 2 containment) and a physiologically-relevant in vitro model of human airway epithelium that recapitulates the mucosal surface of the airway in vivo. Aptamers will also be tested using live virus infections of culture cells (Biosafety Level 3). This work is highly significant given the immediate need for novel therapeutics against SARS-CoV-2. Further, the development of a high-throughput, pseudoparticle-based assay to assess viral entry in a relevant culture system will have broad applications for additional drug screens and / or studies that aim to further understand SARSCoV- 2 virus-host interactions at the level of particle uptake.
SARS-CoV-2 对公共卫生和全球经济的影响怎么强调都不为过。截至九月 2020 年 12 月 28 日,全球有 33,224,222 例病例和 999,298 例死亡与这种新病毒有关。这 令人震惊的数字继续增长,美国的发病率高得不成比例 和死亡率。该病毒以呼吸道为目标,导致广泛的临床结果,包括轻度 上呼吸道疾病和严重病毒性肺炎伴呼吸衰竭。迄今为止,四种 SARS-CoV-2 候选疫苗已进入第三阶段临床试验,并且已开展大规模并行工作 重新利用 FDA 批准的治疗 COVID-19 的药物或识别具有潜在潜力的化合物 治疗活动。尽管做出了这些努力,瑞德西韦仍然是唯一获得批准(具有紧急使用授权)的药物 用于治疗 COVID-19 的直接作用抗病毒药物。至关重要的是:目前还没有疫苗或 批准用于预防或治疗疾病的 SARS-CoV-2 特异性疗法。此外,多个 可能需要抗病毒药物来避免 SARS-CoV-2 耐药株的迅速出现。因此,发展 迫切需要针对 SARS-CoV-2 的新疗法。感染需要病毒之间的相互作用 表面蛋白 Spike (S) 和宿主蛋白 ACE2,在 II 型肺泡细胞和纤毛细胞上表达 存在于人类气道上皮 (HAE) 中,使这些细胞容易受到感染。因此,我们的目标是 开发一种新的治疗方法来阻断spike(病毒上)和ACE2(宿主细胞上)之间的相互作用 以预防感染和改善疾病。适体是基于核酸的短序列,可与 对其目标的亲和力很高。在其他应用中,适配体已被证明具有有效的抗病毒活性 细胞培养中毒性低。虽然适体最初是由 RNA 和 DNA 制成的,但异种核酸 (XNA:具有改变的糖、碱基或磷酸主链的核苷酸类似物)已成为重要的新产品 与 RNA 相比,底物和 XNA 适体通常表现出增强的靶标结合和更高的稳定性 和 DNA 适体。因此,我们假设适配体技术,特别是 XNA 适配体,可以 利用抑制spike-ACE2相互作用并建议建立一个创新的体外筛选平台 这可以用来评估此类适体或其他新型疗法在阻止感染方面的功效。这 平台将利用 SARS-CoV-2 伪粒子(允许在生物安全 2 级遏制下工作)和 人体气道上皮的生理相关体外模型,再现了气道粘膜表面 体内气道。适配体还将使用培养细胞的活病毒感染进行测试(生物安全级别 3)。这 鉴于迫切需要针对 SARS-CoV-2 的新疗法,这项工作非常重要。此外, 开发一种高通量、基于伪粒子的测定法来评估病毒进入相关培养系统 将在其他药物筛选和/或研究方面具有广泛的应用,旨在进一步了解 SARSCoV- 2 病毒与宿主在颗粒摄取水平上的相互作用。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding.
SARS-CoV-2 S 蛋白受体结合域的异种核酸 (XNA) 2-氟阿拉伯核酸 (FANA) 适体可阻断 ACE2 结合。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alves Ferreira;DeStefano, Jeffrey J
  • 通讯作者:
    DeStefano, Jeffrey J
Xeno-nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding.
SARS-CoV-2 S 蛋白受体结合域的异种核酸 (XNA) 2-氟阿拉伯核酸 (FANA) 适体可阻断 ACE2 结合。
  • DOI:
  • 发表时间:
    2021-07-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ferreira;DeStefano, Jeffrey J
  • 通讯作者:
    DeStefano, Jeffrey J
Inhibition of SARS-CoV-2 Infection in Human Airway Epithelium with a Xeno-Nucleic Acid Aptamer.
用异种核酸适体抑制人气道上皮中的 SARS-CoV-2 感染。
  • DOI:
  • 发表时间:
    2023-09-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Razi, Niayesh;Li, Weizhong;Ignacio, Maxinne A;Loube, Jeffrey M;Agostino, Eva L;Zhu, Xiaoping;Scull, Margaret A;DeStefano, Jeffrey J
  • 通讯作者:
    DeStefano, Jeffrey J
Inhibition of SARS-CoV-2 infection in human airway epithelium with a xeno-nucleic acid aptamer.
用异种核酸适体抑制人气道上皮中的 SARS-CoV-2 感染。
  • DOI:
  • 发表时间:
    2023-11-07
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Razi, Niayesh;Li, Weizhong;Ignacio, Maxinne A;Loube, Jeffrey M;Agostino, Eva L;Zhu, Xiaoping;Scull, Margaret A;DeStefano, Jeffrey J
  • 通讯作者:
    DeStefano, Jeffrey J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY J DESTEFANO其他文献

JEFFREY J DESTEFANO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY J DESTEFANO', 18)}}的其他基金

Using new Next Generation Sequencing (NGS) approaches to analyze the fidelity of HIV reverse transcription in Endogenous Reverse Transcription reactions (ERT)
使用新的下一代测序 (NGS) 方法来分析内源性逆转录反应 (ERT) 中 HIV 逆转录的保真度
  • 批准号:
    10759845
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Development and Evaluation of Novel Aptamer-based Therapeutics Targeting SARS-CoV-2 in a Physiologically-Relevant Model of Human Airway Epithelium
在人类气道上皮生理相关模型中针对 SARS-CoV-2 的新型适体疗法的开发和评估
  • 批准号:
    10287842
  • 财政年份:
    2021
  • 资助金额:
    $ 19.31万
  • 项目类别:
Biochemistry of HIV reverse transcriptase fidelity and inhibitor interactions
HIV逆转录酶保真度和抑制剂相互作用的生物化学
  • 批准号:
    9538330
  • 财政年份:
    2016
  • 资助金额:
    $ 19.31万
  • 项目类别:
Biochemistry of HIV reverse transcriptase fidelity and inhibitor interactions
HIV逆转录酶保真度和抑制剂相互作用的生物化学
  • 批准号:
    9064995
  • 财政年份:
    2016
  • 资助金额:
    $ 19.31万
  • 项目类别:
Development of an HIV reverse transcriptase aptamer-based detection assay
基于 HIV 逆转录酶适体的检测方法的开发
  • 批准号:
    8846946
  • 财政年份:
    2014
  • 资助金额:
    $ 19.31万
  • 项目类别:
MECHANISM OF RECOMBINATION BY HIV REVERSE TRANSCRIPTASE
HIV逆转录酶的重组机制
  • 批准号:
    2189459
  • 财政年份:
    1994
  • 资助金额:
    $ 19.31万
  • 项目类别:
MECHANISM OF RECOMBINATION BY HIV REVERSE TRANSCRIPTASE
HIV逆转录酶的重组机制
  • 批准号:
    6342897
  • 财政年份:
    1994
  • 资助金额:
    $ 19.31万
  • 项目类别:
Mechanism of recombination by HIV reverse transcriptase
HIV逆转录酶重组机制
  • 批准号:
    6799077
  • 财政年份:
    1994
  • 资助金额:
    $ 19.31万
  • 项目类别:
Mechanism of recombination by HIV reverse transcriptase
HIV逆转录酶重组机制
  • 批准号:
    7194151
  • 财政年份:
    1994
  • 资助金额:
    $ 19.31万
  • 项目类别:
MECHANISM OF RECOMBINATION BY HIV REVERSE TRANSCRIPTASE
HIV逆转录酶的重组机制
  • 批准号:
    6078616
  • 财政年份:
    1994
  • 资助金额:
    $ 19.31万
  • 项目类别:

相似国自然基金

人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
  • 批准号:
    82330111
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
  • 批准号:
    32372399
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
  • 批准号:
    32300137
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
  • 批准号:
    32302080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
  • 批准号:
    10696610
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Entry inhibition of SARS-CoV-2 by human LRRC15
人 LRRC15 对 SARS-CoV-2 进入的抑制
  • 批准号:
    10575888
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
  • 批准号:
    10696610
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
  • 批准号:
    10722852
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Vagal airway sensory nerve activation by beta-coronavirus spike protein
β-冠状病毒刺突蛋白激活迷走神经气道感觉神经
  • 批准号:
    10748485
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了