Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
基本信息
- 批准号:10449250
- 负责人:
- 金额:$ 72.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAffectBehavioralBiological MarkersBlood specimenCOVID-19 pandemicCardiovascular DiseasesChronic stressClinicalComplementComputing MethodologiesDataData AnalysesDetectionDevelopmentDiagnosticDisastersEmergency CareEmergency Department PhysicianEmergency NursingEmergency SituationEmergency department crowdingEmotionalEmotionsEnvironmentExposure toFaceFacial ExpressionFeedbackFoundationsGoalsHairHead MovementsHealthHealth PersonnelHealthcareHealthcare SystemsHigh PrevalenceHydrocortisoneImpaired cognitionIndividualInterventionInterviewKnowledgeLongitudinal prospective studyMachine LearningMeasuresMediatingMedical ErrorsMethodsModalityMonitorMovementMydriasisNursesOccupationsOutcomePathologyPatient CarePatient Self-ReportPatientsPatternPattern RecognitionPerformancePersonal SatisfactionPersonsPhenotypePhysiciansPhysiologicalPreventionPrevention strategyPrognosisPsyche structurePublic HealthReportingResearchRiskSamplingScheduleSecureSelf CareSelf ManagementSleepSocietiesSpeechStressStress TestsStructureSymptomsTestingTimeTrainingVertebral columnVisitVoiceWell in selfWorkacute careanthropogenesisbasebiomarker panelburnoutcardiovascular disorder riskcardiovascular effectscardiovascular risk factorcare systemsclinical predictorsclinical riskclinically relevantcognitive functioncognitive performancecohortdeep learningdeep learning algorithmdeep neural networkdigitalexecutive functionexperiencegazeimprovedindividual patientinnovationmortalitymultimodalitynovelpandemic diseasepredictive markerprognosticprognostic toolprognostic valueprogramspsychologicpsychological outcomesresponsesafety netscreeningshift worksocialstressortransfer learning
项目摘要
Project Summary
The Emergency Department (ED) is a central pillar of the health care system. ED physicians and
nurses are exposed to high work-related stressors in addition to disruptive day-night shifts. The well-
being of the 150,000 ED clinicians in the U.S. is important for public health with significant
downstream effects on the well-being of the 145 million patients that are served every year. Of the 1
million U.S. physicians, 45% are reporting burnout symptoms and the number increases to 70% in
ED physicians and up to 82% in ED nurses. Clinician burnout is associated with increased risk for
cardiovascular diseases, mortality, medical errors, but also stress-mediated physiological alterations
and cognitive decline. Yet, the knowledge about the long-term development of burnout is limited. To
effectively intervene, the timely identification of ED clinicians at risk for burnout is a critical
prerequisite. This study proposes an innovative approach using digital phenotyping to discover and
test Digital Biomarkers as predictors of burnout symptoms and cognitive function.
This proposed prospective longitudinal study will chart cognitive functioning and burnout
symptom trajectories in a cohort of 350 ED clinicians to inform when, where, and how to intervene.
We will use advanced computational methods to extract objective markers for burnout and cognitive
decline from video and audio data. Based on our preliminary data, we hypothesize that voice and
speech content, head movement, pupil dilation, gaze, and facial landmark features of emotion
provide probabilistic information that will allow us to identify digital biomarkers for burnout and
cognitive function.
We will test the relevance of the discovered digital biomarkers and determine their discriminatory
accuracy to distinguish between risk for clinically relevant vs. non-relevant burnout symptoms. We
examine the association of digital biomarkers with physiological markers of chronic stress (i.e., hair
cortisol concentration). We will also assess the association of digital biomarkers with the long-term
job-related stress load of individual ED clinicians such as high ED crowding, patient acuity level, ED
staffing, sleep, and shift schedules. This research program aims to deliver an objective, accurate,
and reliable digital measure for clinician well-being. Such digital biomarkers will enable more efficient
ED clinician self-management and will promote low-threshold prevention strategies. The mental and
physical well-being of ED clinicians is of high value to those who work day in and day out to save the
lives of others and is the foundation of a well-functioning, high-quality emergency care system.
项目概要
急诊科 (ED) 是医疗保健系统的核心支柱。急诊科医生和
除了破坏性的昼夜轮班之外,护士还面临着与工作相关的高压力。井-
美国 150,000 名急诊临床医生中的一员对于公共卫生非常重要,
下游对每年接受服务的 1.45 亿患者的福祉产生影响。其中 1
100 万名美国医生中,45% 出现职业倦怠症状,而这一数字在 2019 年增加至 70%
急诊医生和急诊护士中的比例高达 82%。临床医生倦怠与以下风险增加相关
心血管疾病、死亡率、医疗错误,还有压力介导的生理变化
和认知能力下降。然而,关于倦怠的长期发展的知识仍然有限。到
有效干预,及时识别有倦怠风险的急诊科临床医生至关重要
前提条件。这项研究提出了一种利用数字表型分析来发现和
测试数字生物标记作为倦怠症状和认知功能的预测因子。
这项拟议的前瞻性纵向研究将绘制认知功能和倦怠的图表
350 名急诊临床医生的症状轨迹,以告知何时、何地以及如何进行干预。
我们将使用先进的计算方法来提取倦怠和认知的客观标记
视频和音频数据下降。根据我们的初步数据,我们假设语音和
言语内容、头部运动、瞳孔扩张、凝视和情感的面部标志特征
提供概率信息,使我们能够识别倦怠和倦怠的数字生物标记
认知功能。
我们将测试所发现的数字生物标记的相关性并确定它们的歧视性
区分临床相关与不相关倦怠症状风险的准确性。我们
检查数字生物标记与慢性压力的生理标记(即头发
皮质醇浓度)。我们还将评估数字生物标记与长期的关联
急诊科临床医生个体与工作相关的压力负荷,例如急诊科拥挤程度、患者敏锐度、急诊科
人员配备、睡眠和轮班时间表。该研究计划旨在提供客观、准确、
以及针对临床医生健康的可靠数字测量。这种数字生物标志物将能够更有效地
急诊科临床医生将提倡自我管理和低门槛预防策略。精神上和
急诊科临床医生的身体健康对于那些日复一日工作以挽救生命的人来说具有很高的价值
他人的生活,是运作良好、高质量的紧急护理系统的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharina Schultebraucks其他文献
Katharina Schultebraucks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharina Schultebraucks', 18)}}的其他基金
Point-of-care prognostic modeling of PTSD risk after traumatic event exposure using digital biomarkers and clinical data from electronic health records in the emergency department setting (PREDICT)
使用数字生物标志物和急诊科电子健康记录中的临床数据对创伤事件暴露后的 PTSD 风险进行护理点预后建模 (PREDICT)
- 批准号:
10884738 - 财政年份:2023
- 资助金额:
$ 72.56万 - 项目类别:
Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
- 批准号:
10298751 - 财政年份:2021
- 资助金额:
$ 72.56万 - 项目类别:
Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
- 批准号:
10298751 - 财政年份:2021
- 资助金额:
$ 72.56万 - 项目类别:
Early Signs:digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians (Early Signs)
早期迹象:数字表型分析可识别数字生物标志物,用于预测 ED 临床医生的倦怠和认知功能(早期迹象)
- 批准号:
10884739 - 财政年份:2021
- 资助金额:
$ 72.56万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
COVID-19 Pandemic-related Changes in the Child Tax Credit and Effects on Behavioral Health for Medicaid-enrolled Adolescents
与 COVID-19 大流行相关的儿童税收抵免变化及其对参加医疗补助的青少年行为健康的影响
- 批准号:
10686628 - 财政年份:2023
- 资助金额:
$ 72.56万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 72.56万 - 项目类别:
Investigating Disparities in End-of-Life Care in Undocumented Hispanic Immigrants
调查无证西班牙裔移民临终关怀方面的差异
- 批准号:
10593462 - 财政年份:2023
- 资助金额:
$ 72.56万 - 项目类别:
Using video games to increase implementation of clinical practice guidelines in trauma triage
使用视频游戏加强创伤分诊临床实践指南的实施
- 批准号:
10582783 - 财政年份:2023
- 资助金额:
$ 72.56万 - 项目类别:
The Effects of Medicaid Section 1115 Serious Mental Illness Waivers on Healthcare Utilization and Suicide-Related Behaviors
医疗补助第 1115 条严重精神疾病豁免对医疗保健利用和自杀相关行为的影响
- 批准号:
10775350 - 财政年份:2023
- 资助金额:
$ 72.56万 - 项目类别: