Development of new drugs for Toxoplasma by advancing hits from the Global Health Chemical Diversity Library

通过推进全球健康化学多样性图书馆的热门产品开发治疗弓形虫的新药

基本信息

  • 批准号:
    10438518
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Toxoplasma gondii is a prolific eukaryotic parasite that is widely distributed throughout the world. Infection with T. gondii can cause severe and potentially fatal brain and eye disease, especially in immunocompromised individuals. Worldwide, T. gondii is also a leading infectious cause of blindness in otherwise healthy individuals. The current first-line therapy for T. gondii is a combination of the drugs pyrimethamine and sulfadiazine, but this regimen suffers from a number of shortcomings. These drugs must be taken for weeks to months, frequently cause toxic side effects, and are incapable of eradicating chronic infection. We need new medicines for T. gondii that are safer, better tolerated, more effective, and can be given for shorter durations. To this end, Dr. Alday and his colleagues have screened the 68,689 compounds in the Global Health Chemical Diversity Library (GHCDL) to find those that inhibit the growth of T. gondii. In doing so, 359 hit compounds were found that strongly inhibit the growth of this parasite. The potency of each of these has been measured and a subset of 73 highly potent and selective compounds selected for further study. All compounds in the GHCDL were chosen for their drug-like physicochemical properties that predict good absorption and distribution when taken orally. Therefore it seems reasonable to hypothesize that within the 359 compounds that strongly inhibit T. gondii growth are those that will be effective against toxoplasmosis when given orally and thus excellent starting points from which to develop new drugs. Dr. Alday's research will systematically evaluate this hypothesis in three parts. First, the potency of all 73 compounds will be verified. An initial study of the structure-activity relationships of the three most promising will be done. Secondly, Dr. Alday will determine the mechanism of action for the top 10 most promising compounds by creating resistant mutants and identifying relevant mutations using whole-genome sequencing. Finally, the effectiveness of the top 10 compounds will be tested in mouse models of infection. Dr. Alday is a physician-scientist at Oregon Health & Science University and the Portland VA Medical Center. Clinically, he is trained in internal medicine and infectious disease (ID), rotates on the inpatient ID consult service, and has an outpatient ID clinic. His PhD is in biochemistry, with a focus on the physical chemistry of protein-protein and protein-small molecule interactions. This unusual background gives him a strong background from which to pursue the work described in this CDA application. He has worked in the Portland VAMC Experimental Chemotherapy Lab with Dr. Michael Riscoe and Dr. Stone Doggett over the past three years, developing proficiency in the molecular and biochemical methods needed to evaluate drugs and their mechanism of action in protozoan parasites. The work proposed in this CDA will provide Dr. Alday with further training in drug design, evaluation of drug mechanisms, and in vivo efficacy studies he needs to become an independent VA investigator. As part of this training grant, he has assembled a team of senior scientists and physician-scientists with expertise in molecular parasitology and drug development. Collectively, they have mentored dozens of trainees towards independence. This panel will meet formally every six months to review Dr. Alday's progress. Additionally, this panel will provide input regarding experimental approaches, review manuscripts prior to publication, and give advise about career development. Dr. Alday will take graduate-level classes in pharmacokinetics and genome sequencing and present his work at scientific meetings. Prior to the end of this CDA, Dr. Alday will have identified promising lead compounds ready for advancement down the drug development pathway as well as new targets for future drug development efforts. Moving these leads forward will form the basis for VA Merit Review and NIH R01 grant applications that will establish him as an independent clinician-scientist devoted to caring for veterans afflicted by infectious diseases through service and research.
弓形虫是一种多产真核寄生虫,广泛分布于世界各地。 弓形虫感染可导致严重且可能致命的脑部和眼部疾病,尤其是免疫功能低下的人 在世界范围内,弓形虫也是导致健康人失明的主要感染原因。 目前弓形虫的一线治疗是乙胺嘧啶和磺胺嘧啶药物的组合,但 这种疗法有许多缺点,这些药物必须服用数周至数月, 经常引起毒副作用,并且无法根除慢性感染,我们需要新药。 对于弓形虫来说,这种药物更安全、耐受性更好、更有效,并且给药时间更短。 为此,Alday博士和他的同事筛选了全球健康数据库中的68,689种化合物 第 359 章 已发现化合物可以强烈抑制这种寄生虫的生长。 测量并选择 73 种高效且选择性的化合物进行进一步研究。 GHCDL 中的这些物质因其类药物的理化特性而被选中,这些特性预示着良好的吸收和 因此,在 359 种化合物中捕获这一点似乎是合理的。 强烈抑制弓形虫生长的药物是口服时可有效对抗弓形虫病的药物 因此,阿尔戴博士的研究将是系统地开发新药的绝佳起点。 首先,将验证所有 73 种化合物的效力。 其次,阿尔戴博士将确定三种最有希望的结构-活性关系。 通过创建抗性突变体来了解前 10 种最有前途的化合物的作用机制 使用全基因组测序的相关突变最后是前 10 名的有效性。 化合物将在小鼠感染模型中进行测试。 Alday 博士是俄勒冈健康与科学大学和波特兰退伍军人管理局医学院的医师科学家 在临床中心,他接受过内科和传染病 (ID) 方面的培训,轮流担任住院医生。 咨询服务,并设有门诊 ID 诊所。他的博士学位是生物化学,重点是物理。 这种不寻常的背景为他提供了蛋白质-蛋白质和蛋白质-小分子相互作用的化学知识。 他拥有从事本 CDA 申请中描述的工作的强大背景。 波特兰 VAMC 实验化疗实验室与 Michael Riscoe 博士和 Stone Doggett 博士的过去 三年时间,培养评估药物和药物所需的分子和生化方法的熟练程度 本 CDA 中提出的工作将为 Alday 博士提供它们在原生动物寄生虫中的作用机制。 他需要在药物设计、药物机制评估和体内功效研究方面进一步接受培训 作为该培训补助金的一部分,他组建了一支高级团队。 具有分子寄生虫学和药物开发专业知识的科学家和医师科学家。 他们已经指导了数十名学员走向独立。该小组将每六个月正式举行一次会议。 此外,该小组还将提供有关实验方法的意见, 在出版前审阅稿件,并给出阿尔戴博士将采取的职业发展建议。 药代动力学和基因组测序研究生课程,并在科学领域展示他的工作 在本次 CDA 结束之前,Alday 博士将确定有前景的先导化合物,并做好准备。 药物开发途径的进展以及未来药物开发工作的新目标。 推动这些线索的推进将构成 VA 绩效审查和 NIH R01 拨款申请的基础,这些申请将 使他成为一名独立的临床医生科学家,致力于照顾患有传染病的退伍军人 通过服务和研究来治疗疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phil Holland Alday其他文献

Phil Holland Alday的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Phil Holland Alday', 18)}}的其他基金

Development of new drugs for Toxoplasma by advancing hits from the Global Health Chemical Diversity Library
通过推进全球健康化学多样性图书馆的热门产品开发治疗弓形虫的新药
  • 批准号:
    10552608
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Development of new drugs for Toxoplasma by advancing hits from the Global Health Chemical Diversity Library
通过推进全球健康化学多样性图书馆的热门产品开发治疗弓形虫的新药
  • 批准号:
    9891756
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

地表水中极低浓度抗生素的高灵敏检测与特异性识别新方法研究
  • 批准号:
    42307566
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工补给对地下水抗生素抗性组与病原菌的影响及调控机制
  • 批准号:
    42377392
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
局域微碱性环境调控对3D-LDHs基类芬顿靶向降解抗生素的增强机制研究
  • 批准号:
    22306188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
  • 批准号:
    42377238
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
过氧乙酸/亚硫酸盐体系降解内酰胺类抗生素作用机制及对氯化消毒副产物的影响与控制
  • 批准号:
    52370009
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
  • 批准号:
    10674221
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
  • 批准号:
    10657805
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
  • 批准号:
    10546657
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Reducing Infection Susceptibility by Immune Function Restoration in Spinal Cord Injury
通过恢复脊髓损伤的免疫功能来降低感染易感性
  • 批准号:
    10034001
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Reducing Infection Susceptibility by Immune Function Restoration in Spinal Cord Injury
通过恢复脊髓损伤的免疫功能来降低感染易感性
  • 批准号:
    10454352
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了