Using Symptom Network Models to Translate Theory to Clinical Applications
使用症状网络模型将理论转化为临床应用
基本信息
- 批准号:10491738
- 负责人:
- 金额:$ 3.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlcoholsClassificationClinicalCluster AnalysisComplexConduct DisorderConsultationsDataData AnalysesDevelopmentDevelopmental ProcessDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDiseaseEnvironmentEpidemiologyEtiologyFactor AnalysisFundingGoalsGrantHeavy DrinkingHeterogeneityHumanIndividualInstructionInterventionKnowledgeLeadManualsMental disordersMentorsMentorshipMissouriModelingModernizationNational Institute on Alcohol Abuse and AlcoholismOutcomePatternPlayProcessRecording of previous eventsRecoveryRecurrenceResearchResearch DesignResearch MethodologyResearch PersonnelRisk FactorsRoleSamplingScienceStatistical MethodsStructureSubgroupSubstance Withdrawal SyndromeSurveysSymptomsSyndromeTechniquesTheoretical modelTrainingTraining ProgramsTranslatingTreatment outcomeUnited States National Institutes of HealthUniversitiesWood materialWorkWritingaddictionalcohol abuse therapyalcohol use disorderallostasiscareerclinical applicationclinical practiceclinical predictorsdesigndiagnostic criteriadiagnostic platformexperienceimprovedinsightmembernetwork modelsnovelopen datapre-clinicalpre-clinical researchprecision medicinepredict clinical outcomepsychologicskillsstatisticssymposiumtheories
项目摘要
PROJECT SUMMARY/ABSTRACT
Broad/Long Term Objectives: The proposed research has two broad goals: to improve diagnostic
conceptualization of AUD by adopting a symptom-focused approach that is more consistent with contemporary
theoretical models of addiction (e.g., allostasis); and to ascertain the extent to which this approach can be
translated into clinical applications.
Specific Aims: The aims of the proposed project are to: characterize how individual AUD symptoms uniquely
predict the onset, persistence, and recurrence (course) of other symptoms; resolve diagnostic heterogeneity and
improve classification by examining symptom structure in a priori and empirically derived subgroups; and analyze
the extent to which different symptoms and symptom subgroups predict clinical outcomes across different forms
of treatment.
Research Design and Method: The project will consist of secondary data analysis using both waves of the
National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the COMBINE study, and Project
MATCH. In NESARC, symptom network modelling (SNM) will be used to identify key symptoms predicting the
course of the other symptoms and identify core features of symptom subgroups. The project will also compare
a priori subgroups based on etiologic (e.g., Conduct Disorder, heavy drinking patterns) risk factors and
subgroups of symptom profiles empirically derived via cluster analysis. In MATCH and COMBINE, general mixed
models and group factor analysis will be applied analyze the interaction between symptom profile, treatment
condition, and treatment outcomes.
Significance: This project will advance the understanding of how AUD diagnostic criteria reflect the endogenous
processes proposed by modern addiction theories, help resolve diagnostic heterogeneity, and improve
diagnostic validity. Additionally, the results of the project will allow for more effective tailoring and implementation
of focused assessment and identification of potential targets for treatment.
Training Plan and Environment: The training plan is designed to provide the applicant with quantitative,
substantive, and practical training to facilitate a successful career as an independent investigator. The applicant
will receive training in advanced multivariate statistics, application of theoretical models of addiction to clinical
outcomes, open sciences practices, and general scientific writing. Training will take place at the University of
Missouri’s Department of Psychological Sciences, which has an outstanding addiction training program funded
by an NIAAA training grant (T32 AA013526; PI: Kenneth Sher). The mentoring team consists of experts in
quantitative (Dr. Steinley, Dr. Wood) and substantive (Dr. Sher, Dr. Witkiewitz) research on AUD. Members of
the team have a long collegial history, providing a synergistic training experience for the applicant.
项目概要/摘要
广泛/长期目标:拟议的研究有两个广泛的目标:改善诊断
通过采用更符合当代的以症状为中心的方法来对 AUD 进行概念化
成瘾的理论模型(例如,动态平衡);并确定这种方法的适用程度;
转化为临床应用。
具体目标:拟议项目的目标是:描述个体 AUD 症状的独特特征
预测其他症状的发生、持续和复发(病程);解决诊断异质性;
通过检查先验和经验得出的亚组中的症状结构并进行分析来改进分类;
不同症状和症状亚组预测不同形式临床结果的程度
的治疗。
研究设计和方法:该项目将包括使用两次波的二次数据分析
全国酒精及相关病症流行病学调查 (NESARC)、COMBINE 研究和项目
MATCH。在NESARC中,症状网络模型(SNM)将用于识别预测的关键症状。
该项目还将比较其他症状的病程并确定症状亚组的核心特征。
基于病因(例如行为障碍、酗酒模式)风险因素的先验亚组和
在 MATCH 和 COMBINE 中,根据经验得出症状特征的亚组,一般是混合的。
将应用模型和组因素分析来分析症状特征、治疗之间的相互作用
病情和治疗结果。
意义:该项目将增进对 AUD 诊断标准如何反映内生性的理解
现代成瘾理论提出的过程有助于解决诊断异质性,并改善
此外,该项目的结果将有助于更有效的调整和实施。
重点评估和确定潜在治疗目标。
培训计划和环境:培训计划旨在为申请人提供定量、
实质性和实用的培训,以促进作为独立调查员的成功职业生涯。
将接受高级多元统计、成瘾理论模型在临床中的应用方面的培训
成果、开放科学实践和一般科学写作培训将在大学进行。
密苏里州心理科学系资助了一项杰出的成瘾训练项目
获得 NIAAA 培训资助(T32 AA013526;PI:Kenneth Sher)。指导团队由以下领域的专家组成。
(Steinley 博士、Wood 博士)和 AUD 成员的实质性研究(Sher 博士、Witkiewitz 博士)。
该团队拥有悠久的学院历史,为申请人提供协同培训经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Conlin其他文献
Cross-sectional and longitudinal AUD symptom networks: They tell different stories.
横截面和纵向 AUD 症状网络:它们讲述不同的故事。
- DOI:
10.31234/osf.io/9bwer - 发表时间:
2021-03-22 - 期刊:
- 影响因子:4.4
- 作者:
William E Conlin;Michaela Hoffman;D. Steinley;K. Sher - 通讯作者:
K. Sher
William E Conlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Conlin', 18)}}的其他基金
Using Symptom Network Models to Translate Theory to Clinical Applications
使用症状网络模型将理论转化为临床应用
- 批准号:
10387871 - 财政年份:2022
- 资助金额:
$ 3.8万 - 项目类别:
相似国自然基金
茶树根系“响应铝信号-黄酮醇类代谢改变-促进生长”模式的机理研究
- 批准号:32372758
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
醇类燃料分子结构对双燃料发动机碳烟生成和演变规律影响的基础研究
- 批准号:52306164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铂基亚纳米/单原子催化剂的创制及其在叶醇类香料合成中的应用
- 批准号:22378079
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单原子催化醇类化合物的选择性氢氘交换反应
- 批准号:22302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向机器人电子皮肤的微型直接醇类燃料电池结构功能一体化复合器件构筑
- 批准号:62304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetic Architecture of the Comorbidity of Alcohol Use Disorder and Chronic Pain
酒精使用障碍和慢性疼痛合并症的遗传结构
- 批准号:
10741891 - 财政年份:2023
- 资助金额:
$ 3.8万 - 项目类别:
Using Symptom Network Models to Translate Theory to Clinical Applications
使用症状网络模型将理论转化为临床应用
- 批准号:
10387871 - 财政年份:2022
- 资助金额:
$ 3.8万 - 项目类别:
P-2: Risk Prediction of platinum-based chemotherapy and Radiotherapy Outcome
P-2:铂类化疗和放疗结果的风险预测
- 批准号:
8731333 - 财政年份:2013
- 资助金额:
$ 3.8万 - 项目类别:
Investigating the generalizability of natural language processing of EMR data
研究 EMR 数据自然语言处理的通用性
- 批准号:
7850343 - 财政年份:2009
- 资助金额:
$ 3.8万 - 项目类别:
Disclosing Contents of Drinks: Experimental Test on Natural Consumption Behavior
饮料内容披露:自然消费行为的实验测试
- 批准号:
7816481 - 财政年份:2009
- 资助金额:
$ 3.8万 - 项目类别: