Discovery and development of Ku-targeted small molecule inhibitors: A novel mechanism of DNA-PK inhibition
Ku 靶向小分子抑制剂的发现和开发:DNA-PK 抑制的新机制
基本信息
- 批准号:10358629
- 负责人:
- 金额:$ 57.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-13 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAdvanced DevelopmentAntineoplastic AgentsAutomobile DrivingBRCA1 geneBRCA2 geneBindingBiochemicalBiological AvailabilityBleomycinCancer ModelCellsCharacteristicsChemicalsChemistryChemotherapy and/or radiationCisplatinClinicalCombined Modality TherapyCoupledCrystallizationDNADNA BindingDNA DamageDNA Double Strand BreakDNA RepairDNA Sequence AlterationDNA-PKcsDNA-dependent protein kinaseDataDevelopmentDoseDouble Strand Break RepairDrug DesignDrug KineticsEtoposideGenerationsGeneticGenetic studyGenome StabilityHealthHumanIn VitroIonizing radiationKnowledgeLungMaintenanceMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMediatingModelingModificationMolecularMolecular Mechanisms of ActionNonhomologous DNA End JoiningOutcomeOvarianPathway interactionsPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPharmacology StudyPhosphotransferasesPlayPropertyPublishingRadiationReagentRegulationReportingResearchRoentgen RaysRoleSeriesSignal PathwaySignal TransductionStressStructureStructure-Activity RelationshipTherapeuticTherapeutic AgentsToxic effectanti-canceranti-cancer therapeuticbasecancer cellcancer geneticscancer therapyclinically relevantdesignearly phase clinical trialgenetic manipulationhomologous recombinationin vivoinhibitorinnovationmolecular targeted therapiesnanomolarnovelnovel therapeuticsprotein kinase inhibitorrecombinational repairrepairedresponsesmall moleculesmall molecule inhibitortargeted agentuptake
项目摘要
The DNA-dependent protein kinase (DNA-PK) is a validated target for cancer therapeutics involved
in the DNA-damage response (DDR) and non-homologous end joining (NHEJ) double strand break (DSB)
repair pathways. Various anti-cancer therapeutic strategies, including ionizing radiation (IR) impart their
efficacy by inducing DNA DSBs. Both genetic and pharmacologic studies have demonstrated that modulating
the DDR and DSB repair pathways has a profound impact on the efficacy of DNA damaging therapeutic agents
supporting the premise of targeting DNA-PK in cancer therapy. Development of DNA-PK inhibitors thus far has
focused entirely on targeting the DNA-PKcs active site, three of which are currently in early phase clinical trials.
We have exploited the requirement for DNA-PK activation of binding to DNA termini via the Ku 70/80
heterodimer to identify small molecule Ku inhibitors that inhibit DNA-PK via a novel mechanism. Preliminary
data show that Ku-inhibitors abrogate DNA-PK catalytic activity at nanomolar concentrations and potentiate
cellular sensitivity to DSB-inducing therapeutics. We have also proven that the observed cellular effects are a
function of direct on-target Ku inhibition. Based on the rigorous published and preliminary data we
hypothesize that DNA-PK inhibition mediated by targeting Ku-DNA binding, will inhibit the DDR and
NHEJ pathways resulting in sensitization of cancer cells to DNA damaging anti-cancer agents. To
address this hypothesis, we propose three specific aims. In Aim 1 we will develop highly potent and selective
DNA-PK inhibitors by targeting the Ku-DNA interaction. Having established nanomolar inhibitors, chemistry
efforts will focus on optimizing the physicochemical and pharmacokinetic properties to increase cellular uptake
and bioavailability while retaining excellent potency and selectivity. In Aim 2 we will determine the molecular
mechanism of action (MOA) of Ku inhibitors and elucidate how chemical inhibition of Ku impacts the cellular
DDR and repair pathways. In Aim 3 we will interrogate how modulation of DSB repair via HRR and DDR
signaling due to Ku inhibition impacts anticancer efficacy alone and in combination therapy in clinically relevant
models of lung and ovarian cancer. We will also assess the impact of common cancer genetic mutations in
genome stability and maintenance pathways (including BRCA1 and BRCA2) towards exploiting synthetic lethal
interactions to enhance drug and radiation efficacy. Completion of these studies will provide essential
information for the continued discovery and development of novel Ku-targeted DNA-PK inhibitors. The impact
of this research thus extends beyond the generation of new knowledge, reagents and models to provide new
molecularly targeted treatment options for a wide array of cancers that are currently difficult to treat effectively.
DNA 依赖性蛋白激酶 (DNA-PK) 是相关癌症治疗的经过验证的靶点
DNA 损伤反应 (DDR) 和非同源末端连接 (NHEJ) 双链断裂 (DSB)
修复通路。各种抗癌治疗策略,包括电离辐射 (IR) 都具有各自的作用
通过诱导 DNA DSB 发挥功效。遗传和药理学研究都表明,调节
DDR 和 DSB 修复途径对 DNA 损伤治疗剂的功效具有深远的影响
支持癌症治疗中靶向 DNA-PK 的前提。迄今为止,DNA-PK抑制剂的开发已
完全专注于靶向 DNA-PKcs 活性位点,其中三个目前处于早期临床试验阶段。
我们利用了通过 Ku 70/80 结合 DNA 末端的 DNA-PK 激活的要求
异二聚体来鉴定通过新机制抑制 DNA-PK 的小分子 Ku 抑制剂。初步的
数据显示 Ku 抑制剂在纳摩尔浓度下消除 DNA-PK 催化活性并增强
细胞对 DSB 诱导疗法的敏感性。我们还证明观察到的细胞效应是
直接靶向 Ku 抑制的功能。根据严格公布的初步数据,我们
假设通过靶向 Ku-DNA 结合介导的 DNA-PK 抑制将抑制 DDR 和
NHEJ 通路导致癌细胞对 DNA 损伤性抗癌药物敏感。到
针对这一假设,我们提出了三个具体目标。在目标 1 中,我们将开发高效且有选择性的
DNA-PK 抑制剂通过靶向 Ku-DNA 相互作用。建立纳摩尔抑制剂后,化学
工作重点是优化理化和药代动力学特性,以增加细胞摄取
和生物利用度,同时保持优异的效力和选择性。在目标 2 中,我们将确定分子
Ku 抑制剂的作用机制 (MOA) 并阐明 Ku 的化学抑制如何影响细胞
DDR 和修复途径。在目标 3 中,我们将探讨如何通过 HRR 和 DDR 调制 DSB 修复
Ku 抑制引起的信号转导会影响临床相关的单独治疗和联合治疗的抗癌功效
肺癌和卵巢癌模型。我们还将评估常见癌症基因突变的影响
基因组稳定性和维护途径(包括 BRCA1 和 BRCA2),以利用合成致死性
相互作用以增强药物和放射疗效。完成这些研究将提供必要的
持续发现和开发新型 Ku 靶向 DNA-PK 抑制剂的信息。影响
因此,这项研究的范围超出了新知识、试剂和模型的产生,以提供新的
针对目前难以有效治疗的多种癌症的分子靶向治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Navnath S Gavande其他文献
Novel Quinoline Substituted Autophagy Inhibitors Attenuate Zika Virus Replication in Ocular Cells.
新型喹啉取代的自噬抑制剂可减弱寨卡病毒在眼细胞中的复制。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5
- 作者:
Sneha Singh;Faraz Ahmad;Hariprasad Aruri;Susmita Das;Prahlad Parajuli;Navnath S Gavande;Pawan Kumar Singh;Ashok Kumar - 通讯作者:
Ashok Kumar
Navnath S Gavande的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Navnath S Gavande', 18)}}的其他基金
Discovery and development of Ku-targeted small molecule inhibitors: A novel mechanism of DNA-PK inhibition
Ku 靶向小分子抑制剂的发现和开发:DNA-PK 抑制的新机制
- 批准号:
10581526 - 财政年份:2020
- 资助金额:
$ 57.28万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An enzyme-based assay for the detection of acetaldehyde-protein adducts
用于检测乙醛-蛋白质加合物的酶测定法
- 批准号:
10760201 - 财政年份:2023
- 资助金额:
$ 57.28万 - 项目类别:
Discovery of inhibitors of EBV lytic cycle inducing protein ZTA for therapeutic development
发现 EBV 裂解周期诱导蛋白 ZTA 抑制剂用于治疗开发
- 批准号:
10684643 - 财政年份:2022
- 资助金额:
$ 57.28万 - 项目类别:
Discovery of inhibitors of EBV lytic cycle inducing protein ZTA for therapeutic development
发现 EBV 裂解周期诱导蛋白 ZTA 抑制剂用于治疗开发
- 批准号:
10384443 - 财政年份:2022
- 资助金额:
$ 57.28万 - 项目类别:
Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
- 批准号:
10203376 - 财政年份:2021
- 资助金额:
$ 57.28万 - 项目类别:
Molecular characterization of biliverdin IXbeta reductase
胆绿素 IXbeta 还原酶的分子表征
- 批准号:
10210076 - 财政年份:2021
- 资助金额:
$ 57.28万 - 项目类别: