Investigation and application of hydrocarbon-degrading enzymes using cryo-electron microscopy and directed evolution
使用冷冻电子显微镜和定向进化研究和应用碳氢化合物降解酶
基本信息
- 批准号:10868997
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlkenesAnaerobic BacteriaBiochemicalBiologicalBioremediationsChemicalsChemistryCorrosionCoupledCryoelectron MicroscopyDevelopmentDirected Molecular EvolutionElementsEngineeringEnvironmentEnzymesEquipmentEvolutionFacultyFamiliarityFumaratesHealthHeart DiseasesHumanHydrocarbonsHydrogen BondingIn VitroInfrastructureInstitutionInvestigationJob ApplicationKidney DiseasesKnowledgeLiver diseasesManuscriptsMethodsMicrobeMolecularMolecular ConformationNatureOilsOrganismOxygenPetroleumPhasePollutionPositioning AttributePostdoctoral FellowProcessProtein EngineeringReactionResearchRouteSiteStructureSubstrate SpecificitySuccinatesTechniquesTechnologyTrainingWorkbiophysical techniquescareercatalystcofactorcombatdesignfascinateforginginhibitorinsightinterestmarinenon-Nativenoveloutreachpollutantremediationstructural biologysuccesstool
项目摘要
PROJECT SUMMARY
Glycyl radical enzymes (GREs) are a growing superfamily that catalyzes an impressive array of chemical
transformations critical to both human health and the environment. GREs share a common glycyl radical cofactor
which allows them to perform challenging, otherwise inaccessible chemistry; however, this simple yet effective
cofactor is extremely oxygen sensitive. Because of the anaerobic nature of these catalysts, they are prevalent
within oxygen-free environments such as the human gut, marine seeps, and crude-oil containing environments.
GREs have been implicated in liver, heart, and kidney diseases and could prove uniquely effective as
bioremediation tools and targets for biodeterioration inhibition; however, most GREs remain uncharacterized. Of
particular interest is a class of GRE known as X-succinate synthases (XSSs), which are prevalent in
hydrocarbon-degrading anaerobes. XSSs catalyze the hydroalkylation of fumarate, in which new C–C bonds are
forged between fumarate and unactivated hydrocarbon substrates. This initial hydrocarbon-activation step allows
for hydrocarbons to be further metabolized by these anaerobes. Through this mechanism, XSS-containing
organisms are able to degrade hydrocarbon pollutants in even the most recalcitrant regions for environmental
remediation. On the other hand, organisms with these enzymes also significantly contribute to microbiologically
influenced corrosion. Beyond their potential environmental significance, XSS enzymes enable challenging
chemistry and could serve as an important addition to the current C–H functionalization toolkit. The work
described here will illuminate key missing mechanistic elements of XSSs and GREs more broadly, characterize
new hydroalkylation enzymes, and explore GRE use in biocatalysis. Here, I aim to use cutting-edge cryo-electron
microscopy (cryo-EM) tools and equipment to capture never-before-seen conformations of GREs as well as
novel structures of XSS enzymes. Additionally, I aim to develop methods of installing the glycyl radical cofactor
in vitro, a feat which has not yet been accomplished for any XSS enzyme to date. In vitro installation will allow
us to probe details of hydroalkylation and activation mechanism that have been severely lacking for this class.
Lastly, I will use directed evolution to engineer XSSs as selective hydroalkylation catalysts. Collectively, this work
will provide insight into the ways in which Nature uses enzymes to achieve remarkable chemistry and will allow
us to begin to harness the powerful radical chemistry Nature has to offer. I will complete the K99 phases of Aims
1 (develop a cryo-EM pipeline for XSSs using BSS) and 2 (determine conditions for in vitro activation of XSSs)
during my postdoc in the Drennan lab at MIT. The R00 phases of Aims 1 (structural characterization of an alkyl-
SS) and 2 (directed evolution of XSSs) will take place during my independent career. During the K99 phase, I
will also develop other proposals for job applications, apply for faculty positions at research-intensive institutions,
and continue my professional development through presentations, submission of manuscripts, and outreach
activities.
项目摘要
甘酰基自由基酶(GRES)是是AA
对健康和环境都至关重要的转变。
这允许表演,否则不可行;
由于这些催化剂的厌氧性,辅助因子非常敏感。
在无氧环境中,例如人类肠道,海洋渗水和原油抗环境。
GRE已与肝脏,心脏和肾脏疾病有关,可能被证明被证明是有效的
生物修复工具和生物繁殖遗传的目标;
特别感兴趣的是一类Gren作为X核酸合成方(XSS),在
碳酸盐厌食症。
在富马酸盐酸化碳酸碳酸盐底物之间锻造。
这些厌氧菌将进一步代谢碳氢化合物。
在事件中,有机体能够降解烃污染物的环境区域
另一方面,具有这些的生物会显着有助于微生物
影响了潜在的环境意义,XSS酶使具有挑战性
化学,可以作为当前C -H功能化工具包的重要补充
在这里描述的将更广泛地阐明XSS和GRE的钥匙缺失机制,以表征
新的氢烷基化酶,并探索Gre Gre在生物催化中的使用。
显微镜(冷冻EM)工具和设备,以捕获GRE和GRE的构型之前
XSS酶的新结构,我旨在开发安装糖基自由基辅因子的方法
在体外,XSS酶迄今尚未实现的壮举。
我们要探究该类别缺乏水烷基化和激活机制的细节。
最后,我将使用定向的进化来设计XSSSSSSSESECESECTY Hydrowallacyalation催化剂。
将提供有关大自然用途实现杰出化学和柳树的方式的见解
我们开始利用强大的激进化学性质必须提供的。
1(使用BSS开发XSS的冷冻管道)和2(确定XSS体外激活的条件)
在MIT的Drennan实验室的博士后。
SS)和2(XSS的进化)将在我的独立职业中进行。
还将为职位申请制定其他建议,申请研究密集型研究所的教师职位,
并通过演讲,提交手稿和宣传来继续我的专业发展
活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Catherine Andorfer其他文献
Mary Catherine Andorfer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Catherine Andorfer', 18)}}的其他基金
Investigation and application of hydrocarbon-degrading enzymes using cryo-electron microscopy and directed evolution
使用冷冻电子显微镜和定向进化研究和应用碳氢化合物降解酶
- 批准号:
10650407 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Investigation and application of hydrocarbon-degrading enzymes using cryo-electron microscopy and directed evolution
使用冷冻电子显微镜和定向进化研究和应用碳氢化合物降解酶
- 批准号:
10426459 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
- 批准号:52300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微氧环境下兼性厌氧菌和产甲烷菌降解长链脂肪酸的协同机制
- 批准号:52170037
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
兼性厌氧菌JPG1在不同氧条件下对铜胁迫的抗性机制与调控
- 批准号:52070037
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
肠道厌氧菌S.Moorei通过抑制AGK调节浸润性CD8+T细胞糖酵解增强直肠癌的辐射抵抗及机制
- 批准号:82073329
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Vanderbilt Antibody and Antigen Discovery for Clostridioides difficile Vaccines
艰难梭菌疫苗的范德比尔特抗体和抗原发现
- 批准号:
10625686 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Developing Methanosarcina spp. as a model system to study cytochromes c and their role in archaeal methane metabolism
正在开发甲烷八叠球菌属。
- 批准号:
10679362 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Multispecies aggregates from human dental plaque nucleate highly diverse spatially structured oral biofilms on saliva coated surfaces
来自人类牙菌斑的多物种聚集体在唾液涂层表面上形成高度多样化的空间结构口腔生物膜
- 批准号:
10679723 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Project 2: Discovery of novel C. difficile antigens using genetic and biochemical approaches
项目2:利用遗传和生化方法发现新的艰难梭菌抗原
- 批准号:
10625693 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Microbiota-based probiotics to treat inborn errors in metabolism
基于微生物群的益生菌可治疗先天性代谢缺陷
- 批准号:
10365689 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: