Modeling PIEZO associated diseases in Caenorhabditis elegans: from genetics to mechanism
秀丽隐杆线虫 PIEZO 相关疾病建模:从遗传学到机制
基本信息
- 批准号:10866791
- 负责人:
- 金额:$ 24.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAllelesAnimal ModelArthrogryposisAwardBasic ScienceBiochemicalBiological AssayBiological ProcessCaenorhabditis elegansCalciumCalcium SignalingCardiovascular systemCellsConnective TissueDataDefectDehydrationDevelopmentDiseaseDistalDrosophila genusDrug TargetingDysplasiaElectrophysiology (science)ExocytosisFunctional disorderGenesGeneticGenetic Predisposition to DiseaseGenetic ScreeningGoalsGonadal Steroid HormonesGonadal structureGordon syndromeHermaphroditismHomeostasisHomologous GeneHumanImageInheritedIon Channel ProteinKnowledgeLinkMass Spectrum AnalysisMembraneMissense MutationModelingMolecularMusMutationNatureNematodaNeuronsOocytesOrthologous GenePathway interactionsPatientsPharyngeal structurePhenotypePhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelProstaglandinsPumpRare DiseasesRegulationReproductionReproductive ProcessReproductive systemResearchResearch PersonnelRoleSeriesSignal PathwaySignal TransductionSperm MotilityStretchingSuppressor MutationsSymptomsSystemTestingTherapeuticTissuesTranslational ResearchVariantWorkZebrafishcareerdesignegggene interactiongenetic analysisgenetic approachgenome sequencingin vivomechanical stimulusmechanotransductionmutantnew therapeutic targetnovelnovel therapeuticsreproductive tractsensorskillssperm cellstomatocytic anemiatraffickingwhole genome
项目摘要
Project Summary/ Abstract
Channelopathies are diseases or physiological disorders caused by the dysfunctional ion channel proteins. For
example, the essential mechanosensitive channels PIEZO1 and PIEZO2 have been tightly linked to multiple
diseases, such as distal arthrogryposis, dehydrated hereditary stomatocytosis, and Gordon Syndrome. There
are ~100 disease alleles that have been identified in PIEZO1/2, most of which caused severe physiological
disorders in cardiovascular, vestibular, neuronal, and connective tissues. Despite the electrophysiological
studies in the patients’ cells indicated that these symptoms are likely due to a mechanotransduction defect, the
underlying mechanisms or molecular determinants of PIEZO diseases remain largely unknown. Here, I
introduce a facile and powerful in vivo system for the functional study of PIEZO; the stretch sensitive and
responsive C. elegans reproductive tract. I have discovered that the dysfunctional PEZO-1 (the sole ortholog of
PIEZO in C. elegans) causes severely reduced brood sizes due to the crushing oocytes in the spermatheca
and poor sperm motility (3). This proposed study aims to discover the nature of the pathways and genetic
interactors that enable PIEZO to respond to mechanical stimuli and coordinate mechanotransductive tissue
function in vivo. Furthermore, I will identify new genetic suppressors and associated pathways in the C.
elegans reproductive tract. This basic research will shed light on the understanding of channelopathy diseases
caused by PIEZO dysfunction and the potential therapeutical drug target design. To achieve these goals, I will
pursue three specific aims: The first aim is to identify novel genetic interactors of PEZO-1 in C. elegans. A
combination of genetic screens and biochemical assays will be used to achieve this aim. I expect that
completing the proposed aims will establish the C. elegans reproductive system as a simple and genetically
tractable model to elucidate PIEZO biological functions and to better understand the molecular mechanisms of
PEZO-1 activity. The second aim is to determine whether inter-tissue signaling pathways (such as the sex
hormone prostaglandin) is affected in pezo-1 mutants. To achieve this aim, I will perform genetic and
biochemical assays to determine whether PEZO-1 contributes to prostaglandin synthesis and secretion, which
are essential for sperm attraction. The final aim is to identify target tissues and relative contribution of PIEZO
disease alleles to intracellular Ca2+ homeostasis and signaling. To achieve this aim, I will generate a set of the
tissue-specific Ca2+ indicators to quantify the calcium influx in each mutant. These studies should lead to a
comprehensive delineation of genes that interact with pezo-1, and new pathways that involve
mechanotransduction. This research will also shed light on the molecular mechanisms of the genetic diseases
caused by PIEZO dysfunction. Overall, this K99/R00 award will strengthen my research skillset and facilitate
my transition into an independent researcher in the field of genetics, development, mechanobiology, and
translational science of human rare diseases.
项目摘要/摘要
通道病是由功能失调的离子通道蛋白引起的疾病或身体疾病。为了
例如,必需的机械敏感通道Piezo1和Piezo2已与多个
疾病,例如远端关节炎,脱水的遗传性气孔病和戈登综合征。那里
是在Piezo1/2中鉴定出的〜100个疾病等位基因,其中大多数引起了严重的生理
心血管,前庭,神经元和连接的组织中的疾病。尽管有电生理学
对患者细胞的研究表明,这些符号可能是由于机械转导缺陷引起的
压电疾病的基本机制或分子确定剂在很大程度上尚不清楚。在这里,我
引入一个轻松而有力的体内系统,用于对压电的功能研究;拉伸敏感和
反应性秀丽隐杆线虫生殖道。我发现功能失调的PEZO-1(唯一的直系同源
秀丽隐杆线虫中的压电会导致由于精子中的卵母细胞的碎卵母细胞而严重降低了育雏尺寸
和精子运动不良(3)。这项拟议的研究旨在发现途径和遗传的性质
使压电能够对机械刺激和坐标机械转移组织做出反应的交互器
在体内功能。此外,我将确定C中的新遗传补充剂和相关途径。
秀丽隐杆线生殖道。这项基础研究将阐明对通道病疾病的理解
由压电功能障碍和潜在的治疗药物靶靶设计引起。为了实现这些目标,我将
追求三个特定目的:第一个目的是识别秀丽隐杆线虫中PEZO-1的新遗传相互作用者。一个
遗传筛选和生化测定的组合将用于实现这一目标。我希望那个
完成提出的目标将建立秀丽隐杆线虫生殖系统作为简单而普遍的
可阐明压电生物学功能的可进行的模型,并更好地了解分子机制
PEZO-1活动。第二个目的是确定组织间信号通路是否(例如性别)
激素前列腺素)在PEZO-1突变体中受到影响。为了实现这一目标,我将执行遗传和
生化测定以确定PEZO-1是否有助于前列腺素的合成和分泌,这
对于精子吸引力至关重要。最终目的是确定压电的目标时间和相对贡献
疾病等位基因细胞内Ca2+稳态和信号传导。为了实现这一目标,我将生成一组
组织特异性的Ca2+指标,以量化每个突变体中的钙影响。这些研究应导致
与PEZO-1相互作用的基因的全面描述以及涉及的新途径
机械转导。这项研究还将阐明遗传疾病的分子机制
由压电功能障碍引起。总体而言,这项K99/R00奖将增强我的研究技能并促进
我过渡到遗传学,发展,机械生物学和
人类稀有疾病的转化科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofei Bai其他文献
Xiaofei Bai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:82200258
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:82171845
- 批准年份:2021
- 资助金额:54.00 万元
- 项目类别:面上项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别: