Identifying brain networks to predict treatment resistance and post-surgical outcome: An ENIGMA-Epilepsy initiative
识别大脑网络以预测治疗抵抗和术后结果:ENIGMA-癫痫计划
基本信息
- 批准号:10626074
- 负责人:
- 金额:$ 61.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnticonvulsantsBenchmarkingBilateralBrainCharacteristicsClassificationClinicalClinical DataCommunitiesComplementCountryCoupledDataData SetDatabasesDevelopmentDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingDiseaseDrug resistanceEnsureEpilepsyEvaluationFailureFreedomFrontal Lobe EpilepsyGeneralized EpilepsyGeneticGenetic MarkersGenetic RiskGenetic VariationGeographyGrantHealthHeterogeneityHumanImageIndividualInfrastructureIntractable EpilepsyLesionLiftingLobeLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMeta-AnalysisMethodsModelingNational Institute of Neurological Disorders and StrokeNeurologicNewly DiagnosedOperative Surgical ProceduresOutcomePartial EpilepsiesPatient-Focused OutcomesPatientsPatternPersonsPharmaceutical PreparationsPlayPostoperative PeriodPrediction of Response to TherapyPropertyReproducibilityReproducibility of ResultsResearchResourcesRisk FactorsRoleSample SizeSamplingSeizuresSeriesSiteSyndromeTechnologyTemporal Lobe EpilepsyTestingTreatment outcomeUnited States National Institutes of HealthVisualbrain abnormalitiesclinical biomarkersclinical riskcohortcomorbidityconnectomedata harmonizationdesigndeterminants of treatment resistancedrug response predictionfrontal lobegenetic risk factorhuman old age (65+)imaging biomarkerimprovedindividual patientinsightinterestlarge datasetslarge scale datanervous system disordernetwork modelsneuroimagingpatient responsepolygenic risk scorepredicting responsequantitative imagingresponsesurgery outcometreatment planning
项目摘要
ABSTRACT
Epilepsy is a devastating neurological illness that affects over 50 million people worldwide.
Approximately one-third of patients do not respond to anti-seizure medication (ASM) and require additional
diagnostic work-up, including consideration for surgery. Structural neuroimaging plays a pivotal role in the
diagnostic evaluation of epilepsy, identifying visible lesions in many patients that co-localize with the seizure
focus. However, up to 40% of patients have normal-appearing MRIs and this number is growing. As a result,
there is increased interest in identifying subtle brain network abnormalities that could help to delineate the
epileptogenic network and aid in the prediction of treatment response (i.e., response to ASMs and surgical
outcomes). Unfortunately, methods for reliably identifying which patients will be drug-responsive versus drug-
resistant, and which patients will achieve successful versus unsuccessful surgical outcomes are lacking.
A major barrier to progress in this field has been obtaining quantitative imaging, including structural MRI
(sMRI) and diffusion-weighted imaging (dMRI), clinical, and genetic data on large, geographically diverse
samples of patients in whom different treatment outcomes can be evaluated. In the past, sample sizes have
been insufficient to detect subtle, but reliable, brain abnormalities in patients with focal or generalized
epilepsies that are genuinely associated with epilepsy and not with vicissitudes related to small or
geographically restricted samples.
A new, large-scale data initiative, ENIGMA4-Epilepsy, coupled with technological advancements that
enable improved data harmonization are now lifting these barriers and allowing us to combine multi-site
sMRI/dMRI, clinical, genetic data to predict important clinical outcomes, and making the results generalizable
to a global epilepsy community. In this grant, we will leverage data collected through ENIGMA-Epilepsy—a
consortium of 24 epilepsy centers from 14 countries (more than 2,250 patient and 1,727 healthy control
sMRI/dMRI datasets) and the Human Epilepsy Project (HEP). We will include new network models (i.e.,
individualized connectomes) and polygenic risk scores (PRS) to test whether a combination of imaging,
clinical, and genetic risk can accurately predict two clinical outcomes: drug-resistance and post-operative
seizure outcome. Our scientific premise is that MRI-based assessment of whole-brain network properties, in
combination with clinical data and PRS derived from genetic data, are able to predict (i) drug response in
recently diagnosed epilepsy cases and (ii) postsurgical outcomes in individuals with drug-resistant epilepsy.
This R01 addresses NIH's call for more reproducible studies by introducing a highly-powered design
capable of capturing variability across patients with diverse clinical characteristics and treatment outcomes.
This grant is also directly aligned with NINDS's 2020 Epilepsy Benchmarks (IIIB), which encourage the
identification of genetic, clinical, and imaging biomarkers capable of predicting treatment response in epilepsy.
抽象的
癫痫是一种毁灭性的神经系统疾病,影响着全世界超过 5000 万人。
大约三分之一的患者对抗癫痫药物 (ASM) 没有反应,需要额外的治疗
诊断检查,包括考虑手术,在手术中起着关键作用。
癫痫的诊断评估,识别许多患者中与癫痫发作共存的可见病变
然而,高达 40% 的患者 MRI 表现正常,而且这个数字还在不断增长。
人们对识别微妙的大脑网络异常越来越感兴趣,这有助于描绘
致癫痫网络并有助于预测治疗反应(即对 ASM 和手术的反应)
不幸的是,无法可靠地识别哪些患者对药物有反应,哪些患者对药物有反应。
目前尚不清楚哪些患者会获得成功的手术结果,哪些患者会获得失败的手术结果。
该领域取得进展的一个主要障碍是获得定量成像,包括结构 MRI
(sMRI) 和弥散加权成像 (dMRI)、临床和遗传数据,涉及大量、地域多样的数据
可以评估不同治疗结果的患者样本 在过去,样本量已经改变。
不足以检测局灶性或全身性患者的微妙但可靠的大脑异常
与癫痫真正相关的癫痫病,而不是与小或小的疾病相关的变迁。
受地理限制的样本。
一项新的大规模数据计划 ENIGMA4-Epilepsy 以及技术进步
实现改进的数据协调现在正在消除这些障碍,并使我们能够结合多站点
sMRI/dMRI、临床、遗传数据可预测重要的临床结果,并使结果具有普遍性
在这笔赠款中,我们将利用通过 ENIGMA-Epilepsy 收集的数据。
由来自 14 个国家的 24 个癫痫中心组成的联盟(超过 2,250 名患者和 1,727 名健康对照者)
sMRI/dMRI 数据集)和人类癫痫项目(HEP)我们将包括新的网络模型(即,
个体化连接组)和多基因风险评分(PRS)来测试影像学、
临床和遗传风险可以准确预测两种临床结果:耐药性和术后
我们的科学前提是基于 MRI 的全脑网络特性评估。
结合临床数据和源自遗传数据的 PRS,能够预测 (i) 药物反应
最近诊断的癫痫病例和 (ii) 耐药性癫痫患者的术后结果。
该 R01 通过引入高性能设计来满足 NIH 对更具可重复性的研究的呼吁
能够捕获具有不同临床特征和治疗结果的患者的变异性。
这笔赠款还与 NINDS 的 2020 年癫痫基准 (IIIB) 直接一致,该基准鼓励
鉴定能够预测癫痫治疗反应的遗传、临床和影像生物标志物。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy.
- DOI:10.1093/brain/awab417
- 发表时间:2022-05-24
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets.
- DOI:10.1038/s41592-021-01186-4
- 发表时间:2021-07
- 期刊:
- 影响因子:48
- 作者:Larivière S;Paquola C;Park BY;Royer J;Wang Y;Benkarim O;Vos de Wael R;Valk SL;Thomopoulos SI;Kirschner M;Lewis LB;Evans AC;Sisodiya SM;McDonald CR;Thompson PM;Bernhardt BC
- 通讯作者:Bernhardt BC
Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study.
- DOI:10.1016/j.nicl.2021.102765
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gleichgerrcht E;Munsell BC;Alhusaini S;Alvim MKM;Bargalló N;Bender B;Bernasconi A;Bernasconi N;Bernhardt B;Blackmon K;Caligiuri ME;Cendes F;Concha L;Desmond PM;Devinsky O;Doherty CP;Domin M;Duncan JS;Focke NK;Gambardella A;Gong B;Guerrini R;Hatton SN;Kälviäinen R;Keller SS;Kochunov P;Kotikalapudi R;Kreilkamp BAK;Labate A;Langner S;Larivière S;Lenge M;Lui E;Martin P;Mascalchi M;Meletti S;O'Brien TJ;Pardoe HR;Pariente JC;Xian Rao J;Richardson MP;Rodríguez-Cruces R;Rüber T;Sinclair B;Soltanian-Zadeh H;Stein DJ;Striano P;Taylor PN;Thomas RH;Elisabetta Vaudano A;Vivash L;von Podewills F;Vos SB;Weber B;Yao Y;Lin Yasuda C;Zhang J;Thompson PM;Sisodiya SM;McDonald CR;Bonilha L;ENIGMA-Epilepsy Working Group
- 通讯作者:ENIGMA-Epilepsy Working Group
A worldwide ENIGMA study on epilepsy-related gray and white matter compromise across the adult lifespan
一项关于成人一生中与癫痫相关的灰质和白质损害的全球 ENIGMA 研究
- DOI:10.1101/2024.03.02.583073
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Chen J
- 通讯作者:Chen J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARRIE R MCDONALD其他文献
CARRIE R MCDONALD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARRIE R MCDONALD', 18)}}的其他基金
BRain Aging and Cognition in Epilepsy (BRACE): A longitudinal investigation of vascular, genetic, and biomarker risk profiles in elderly patients with epilepsy
癫痫中的脑衰老和认知(BRACE):对老年癫痫患者的血管、遗传和生物标志物风险状况的纵向调查
- 批准号:
10696445 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
BRain Aging and Cognition in Epilepsy (BRACE): A longitudinal investigationof vascular, genetic, and biomarker risk profiles in elderly patients with epilepsy
癫痫中的大脑老化和认知(BRACE):对老年癫痫患者的血管、遗传和生物标志物风险状况的纵向调查
- 批准号:
10619376 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
BRain Aging and Cognition in Epilepsy (BRACE): A longitudinal investigation of vascular, genetic, and biomarker risk profiles in elderly patients with epilepsy
癫痫中的脑衰老和认知(BRACE):对老年癫痫患者的血管、遗传和生物标志物风险状况的纵向调查
- 批准号:
10178366 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
Multimodal imaging of memory in epilepsy from whole brain networks to local neuronal responses: Implications for surgical decision-making
从全脑网络到局部神经元反应的癫痫记忆多模态成像:对手术决策的影响
- 批准号:
10540407 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
Multimodal imaging of memory in epilepsy from whole brain networks to local neuronal responses: Implications for surgical decision-making
从全脑网络到局部神经元反应的癫痫记忆多模态成像:对手术决策的影响
- 批准号:
10333627 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
BRain Aging and Cognition in Epilepsy (BRACE): A longitudinal investigation of vascular, genetic, and biomarker risk profiles in elderly patients with epilepsy
癫痫中的脑衰老和认知(BRACE):对老年癫痫患者的血管、遗传和生物标志物风险状况的纵向调查
- 批准号:
10456839 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
Identifying brain networks to predict treatment resistance and post-surgical outcome: An ENIGMA-Epilepsy initiative
识别大脑网络以预测治疗抵抗和术后结果:ENIGMA-癫痫计划
- 批准号:
10443866 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
BRain Aging and Cognition in Epilepsy (BRACE): A longitudinal investigation of vascular, genetic, and biomarker risk profiles in elderly patients with epilepsy
癫痫中的脑衰老和认知(BRACE):对老年癫痫患者的血管、遗传和生物标志物风险状况的纵向调查
- 批准号:
10667493 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
Identifying brain networks to predict treatment resistance and post-surgical outcome: An ENIGMA-Epilepsy initiative
识别大脑网络以预测治疗抵抗和术后结果:ENIGMA-癫痫计划
- 批准号:
10274827 - 财政年份:2021
- 资助金额:
$ 61.75万 - 项目类别:
Multimodal imaging of cognitive networks in epilepsy: Implications for surgery
癫痫认知网络的多模态成像:对手术的影响
- 批准号:
9026942 - 财政年份:2010
- 资助金额:
$ 61.75万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigational WNT-pathway modulators for the treatment and prevention of drug-resistant seizures
用于治疗和预防耐药性癫痫发作的研究性 WNT 通路调节剂
- 批准号:
10725450 - 财政年份:2023
- 资助金额:
$ 61.75万 - 项目类别:
Nanoparticle-mediated delivery of a base editor for in utero treatment of Canavan Disease
纳米颗粒介导的碱基编辑器递送用于子宫内治疗卡纳万病
- 批准号:
10727872 - 财政年份:2023
- 资助金额:
$ 61.75万 - 项目类别:
Multiscale Dynamics of the Frontotemporal Connectome in Refractory Epilepsy
难治性癫痫额颞叶连接组的多尺度动力学
- 批准号:
10510593 - 财政年份:2022
- 资助金额:
$ 61.75万 - 项目类别:
Using Polylox DNA barcodes to lineage trace adult neural stem cells in Alzheimers Disease
使用 Polylox DNA 条形码对阿尔茨海默病中的成体神经干细胞进行谱系追踪
- 批准号:
10672972 - 财政年份:2022
- 资助金额:
$ 61.75万 - 项目类别:
Opioid Prescribing Practices and Health Outcomes among Patients with Alzheimer's Disease and Related Dementia
阿尔茨海默病和相关痴呆症患者的阿片类药物处方实践和健康结果
- 批准号:
10693853 - 财政年份:2022
- 资助金额:
$ 61.75万 - 项目类别: