Learning about the evolution of structural variations from genomic and transcriptomic data
从基因组和转录组数据中了解结构变异的演变
基本信息
- 批准号:10625833
- 负责人:
- 金额:$ 37.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnimalsAutomobile DrivingBiological AssayBiomedical ResearchBirthCessation of lifeClassificationColor VisionsCommunitiesComplexComputer softwareDNADataDecision TreesDevelopmentDiseaseDrosophila genusEventEvolutionFutureGene DeletionGene DuplicationGene ExpressionGenomeGenomicsGoalsHumanIndividualInvestigationLearningLifeMalignant NeoplasmsMammalsMethodsModelingMutationNatural SelectionsNatureOrganismOutcomePatternPhylogenetic AnalysisPlantsPlayPoaceaePopulationRecording of previous eventsRoleShapesTaxonomyTechniquesTimeTissuesTreesVariantWorkdesignfollow-upgene translocationgenomic variationhuman diseaseinnovationinterestmigrationopen sourcestatistical and machine learningtranscriptomics
项目摘要
PROJECT SUMMARY
Structural variations are key drivers of both evolutionary adaptation and human disease. My group develops and
applies computational and statistical approaches for understanding the evolution of structural variations from
patterns in their genomic and transcriptomic data. During the past few years, our studies have focused primarily
on gene duplication, which represents the most common type of structural variation observed in nature. In
particular, we investigated the origins of evolutionary innovation after gene duplication, a problem of long-
standing interest in the evolutionary genomics community. To answer this question, we designed the first method
for classifying evolutionary outcomes of duplicate genes from phylogenetic comparisons of their gene expression
profiles. By applying this decision tree method to multi-tissue gene expression data, we were able to classify
evolutionary outcomes of duplicate genes in Drosophila, mammals, and grasses. These studies revealed
frequent tissue-specific expression divergence after duplication, as well as sequence and expression differences
within and among taxa that are consistent with natural selection. In a follow-up population-genomic analysis, we
demonstrated that natural selection indeed plays an important role in the evolutionary outcomes of young
duplicate genes in Drosophila. Later, we developed analogous decision tree classifiers for two additional types
of structural variations: gene deletion and translocation. Applications of our methods to sequence and expression
data from multiple tissues and developmental stages in Drosophila uncovered rapid divergence concordant with
adaptation, suggesting that natural selection shapes the evolutionary trajectories of structural variations
generated by deletion and translocation as well. However, our recent analyses revealed that there are many
limitations of these decision tree methods, including sensitivity to gene expression stochasticity, lack of statistical
support, and inability to predict parameters driving the evolution of structural variations. Thus, during the next
five years, my group will develop a suite of tailored model-based statistical and machine learning approaches for
classifying the evolutionary outcomes and predicting the evolutionary parameters of structural variations arising
from duplication, deletion, inversion, and translocation events. Our preliminary studies indicate that these
techniques will be much more powerful and accurate than previous approaches, and will therefore compose
major advancements in evolutionary investigations of structural variations. In addition to implementing our
methods in open source software packages, we will apply them to assay the evolutionary implications of different
types of structural variations in humans and several other animal and plant taxa. Comparisons will be made
among different types of structural variations, their evolutionary outcomes, and taxonomic groups. The major
goal of these studies will be to ascertain the general rules by which different types of structural variation
contribute to evolutionary innovation. Together, these studies will shed light on how gene duplication, deletion,
inversion, and translocation work in concert to generate a diversity of complex adaptations across the tree of life.
项目摘要
结构变化是进化适应和人类疾病的关键驱动因素。我的小组成长,
应用计算和统计方法来理解结构变化的演变
其基因组和转录组数据中的模式。在过去的几年中,我们的研究主要集中
关于基因复制,它代表了自然界观察到的最常见的结构变异类型。在
特别是,我们研究了基因复制后进化创新的起源,这是一个长期的问题
对进化基因组学界的兴趣。为了回答这个问题,我们设计了第一种方法
从其基因表达的系统发育比较中,用于对重复基因的进化结果进行分类
概况。通过将此决策树方法应用于多组织基因表达数据,我们能够对
果蝇,哺乳动物和草中重复基因的进化结果。这些研究揭示了
复制后频繁的组织特异性表达差异以及序列和表达差异
与自然选择一致的分类单元内外。在后续人群基因组分析中,我们
证明自然选择确实在年轻人的进化结果中起着重要作用
果蝇中的重复基因。后来,我们为另外两种类型开发了类似的决策树分类器
结构变化:基因缺失和易位。我们的方法应用于顺序和表达
来自多个组织的数据和果蝇中的发育阶段发现了与
适应,表明自然选择塑造结构变化的进化轨迹
也由删除和易位生成。但是,我们最近的分析表明有很多
这些决策树方法的局限性,包括对基因表达随机性的敏感性,缺乏统计
支持,以及无法预测推动结构变化演变的参数。因此,在下一个
五年,我的小组将开发一套量身定制的基于模型的统计和机器学习方法
分类进化结果并预测产生的结构变化的进化参数
来自重复,删除,反转和易位事件。我们的初步研究表明这些
技术将比以前的方法更强大,更准确,因此会构成
结构变化进化研究的主要进步。除了实施我们
开源软件包中的方法,我们将应用它们来分析不同的进化含义
人类以及其他几种动物和植物类群的结构变化类型。将进行比较
在不同类型的结构变化中,它们的进化结果和分类群体。专业
这些研究的目标将是确定不同类型的结构变化的一般规则
有助于进化创新。这些研究共同阐明了基因复制,缺失,
倒置和转运协同工作,在整个生命树上产生多种复杂的适应性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
No Expression Divergence despite Transcriptional Interference between Nested Protein-Coding Genes in Mammals.
- DOI:10.3390/genes12091381
- 发表时间:2021-09-01
- 期刊:
- 影响因子:3.5
- 作者:Assis R
- 通讯作者:Assis R
Epistasis-Driven Evolution of the SARS-CoV-2 Secondary Structure.
- DOI:10.1007/s00239-022-10073-1
- 发表时间:2022-12
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
Models for the retention of duplicate genes and their biological underpinnings.
- DOI:10.12688/f1000research.141786.1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raquel Assis其他文献
Raquel Assis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raquel Assis', 18)}}的其他基金
Learning about the evolution of structural variations from genomic and transcriptomic data
从基因组和转录组数据中了解结构变异的演变
- 批准号:
10458725 - 财政年份:2021
- 资助金额:
$ 37.36万 - 项目类别:
Learning about the evolution of structural variations from genomic and transcriptomic data
从基因组和转录组数据中了解结构变异的演变
- 批准号:
10270302 - 财政年份:2021
- 资助金额:
$ 37.36万 - 项目类别:
Gene duplication in the evolution of novel phenotypes and human disease
新表型和人类疾病进化中的基因复制
- 批准号:
8398686 - 财政年份:2012
- 资助金额:
$ 37.36万 - 项目类别:
Gene duplication in the evolution of novel phenotypes and human disease
新表型和人类疾病进化中的基因复制
- 批准号:
8536143 - 财政年份:2012
- 资助金额:
$ 37.36万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:52272413
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
- 批准号:
10644865 - 财政年份:2023
- 资助金额:
$ 37.36万 - 项目类别:
Mechanisms and Functions of Cortical Activity to Restore Behavior
皮层活动恢复行为的机制和功能
- 批准号:
10737217 - 财政年份:2023
- 资助金额:
$ 37.36万 - 项目类别:
Novel therapies for obesity- or diabetes-related lymphatic dysfunction
肥胖或糖尿病相关淋巴功能障碍的新疗法
- 批准号:
10602589 - 财政年份:2023
- 资助金额:
$ 37.36万 - 项目类别:
Unravelling highly pathogenic influenza virus emergence
揭开高致病性流感病毒出现的谜团
- 批准号:
10718091 - 财政年份:2023
- 资助金额:
$ 37.36万 - 项目类别:
Decoding the epigenetic landscape that delineates T cell homeostatic proliferation from uncontrolled growth”
解码表观遗传景观,描绘 T 细胞稳态增殖与不受控制的生长 –
- 批准号:
10644128 - 财政年份:2023
- 资助金额:
$ 37.36万 - 项目类别: