The molecular architecture of perineuronal nets

神经周围网络的分子结构

基本信息

  • 批准号:
    10625443
  • 负责人:
  • 金额:
    $ 40.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Perineuronal nets (PNNs) are conspicuous neural extracellular matrix (ECM) structures that have garnered significant interest over the last decade for the critical roles they play in neural developmental plasticity. These complex macromolecular structures are implicated in an array of cognitive functions, and are altered in a variety of neurological disorders. Despite the growing interest in PNN functions, the mechanisms by which they modulate neural functions are poorly understood, because there are currently no tools or techniques to manipulate PNNs specifically. We surmise that our inability to target and disrupt PNNs is primarily driven by a lack of understanding of their molecular composition or structure. Our goal in this proposal is to conduct a structure-function analysis of known PNN components as well as to identify proteins that anchor nets to neuronal surfaces. Using a powerful combination of in vitro and in vivo approaches, we have obtained strong preliminary data detailing how the newly identified PNN component receptor protein tyrosine phosphatase zeta (RPTPζ) associates with tenascin-R (TNR) within PNNs at a molecular level. Furthermore, our data indicate that the RPTPζ•TNR complex anchors PNNs to the neuronal cell surface via the GPI-linked protein contactin-1 (CNTN1), which makes CNTN1 the first surface binding protein for PNNs ever identified. Our central hypothesis is that there are a set of unique components and receptors of PNNs that nucleate PNNs and anchor them to specific neuronal cell surfaces, thereby defining their unique structure and functions. The overall objective of this proposal is to identify PNN-specific components and dissect the formation of PNNs through a unique combination of proximity-labeling assays, protein-binding assays, and protein X-ray crystallography in order to create the tools to target and manipulate these structures specifically and precisely. Our long-term goal is then to use these tools to dissect PNN function in order to better understand disease pathogenesis and ultimately to target PNNs therapeutically. Guided by our strong preliminary data, this proposal seeks to discover the unique components that guide the assembly of PNNs by pursuing three non-overlapping specific aims: 1) defining the role of the RPTPζ•TNR complex in anchoring PNNs to neuronal surfaces; 2) pursuing the biochemical and structural characterization of interactions between ACAN, HAPLN1, and TNR; and 3) identifying cell surface receptors and novel components of PNNs. The proposed work is significant because it will attempt to identify the key unique components that contribute to the formation and thereby function of PNNs. Successful completion of the aims will provide key insights and reagents to manipulate PNNs specifically and precisely and ultimately understand their functional mechanisms. This approach is innovative because it brings together a novel combination of physiological, biochemical and structural approaches to investigate these important macromolecular assemblies in the central nervous system. Ultimately, the proposed work could be transformative for the field and lead to key mechanistic insights into of PNN function in health and disease.
会内神经元网(PNN)是已获得的显着神经细胞外基质(ECM)结构 在过去的十年中,对于神经发育塑性的批判性角色,这是对批判性角色的重大兴趣 复杂的大分子结构与我有关的一系列认知功能,并在各种 尽管对PNN功能的兴趣越来越大,但它们 模拟神经功能是糟糕的联盟理解的,因为目前没有工具或技术 专门操作PNN。 缺乏对他们的分子组成或结构的理解。 已知PNN成分的结构 - 功能分析,以鉴定纳入神经元的蛋白质 表面使用体外和体内方法的强大组合 数据详细介绍了新鉴定的PNN成分受体蛋白磷酸酶Zeta(RPTPζ)如何 在分子水平的PNN中与Tenascin-R(TNR)相关联。 RPTPζ•TNRCompζ通过GPI连接的蛋白接触蛋白1(CNTN1),将PNN锚定在神经元细胞表面, 使CNTN1成为曾经鉴定出的PNN的第一个表面结合蛋白。 PNN的atet成分和受体有核PNN并将其锚定在特定的 神经元细胞表面,从而限制其独特的结构和功能。 是识别PNN特异性成分和疾病,通过独特的组合形成PNN 接近标记的测定,蛋白质结合测定和蛋白质X射线晶体学,以创建工具 针对和操纵这些结构。 剖析PNN功能以更好地理解疾病发病机理并最终靶向PNN 在我们的强大初步数据的指导下,该提议旨在发现独特的组成部分 通过追求三个非重叠的特定目的,指导PNN的组装:1)定义角色 RPTPζ•将PNN锚定在神经元表面的tnr复合物; 2) ACAN,HAPLN1和TNR之间的相互作用的表征; 3)识别细胞表面受体和 PNN的新颖组成部分。 有助于PNN的形成和促进功能的组件。 将提供关键的见解和试剂,以专门,精确地操纵PNN 它们的功能机制是创新的 生理,生化和结构方法研究重要的大分子组件 在中央神经系统中,最终的支撑作品可能是对该领域的变革 对健康和疾病中PNN功能的机理见解。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural basis for interactions between RPTPζ/PTPRZ and the perineuronal net component tenascin-R.
RPTPγ/PTPRZ 和周围神经网络成分腱蛋白-R 之间相互作用的结构基础。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Bouyain其他文献

Samuel Bouyain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Bouyain', 18)}}的其他基金

The molecular architecture of perineuronal nets
神经周围网络的分子结构
  • 批准号:
    10307382
  • 财政年份:
    2021
  • 资助金额:
    $ 40.66万
  • 项目类别:
The molecular architecture of perineuronal nets
神经周围网络的分子结构
  • 批准号:
    10455609
  • 财政年份:
    2021
  • 资助金额:
    $ 40.66万
  • 项目类别:
STRUCTURAL AND BIOCHEMICAL STUDIES OF PROTEIN TYROSINE PHOSPHATASE FUNCTION
蛋白质酪氨酸磷酸酶功能的结构和生化研究
  • 批准号:
    8149804
  • 财政年份:
    2010
  • 资助金额:
    $ 40.66万
  • 项目类别:
STRUCTURAL AND BIOCHEMICAL STUDIES OF PROTEIN TYROSINE PHOSPHATASE FUNCTION
蛋白质酪氨酸磷酸酶功能的结构和生化研究
  • 批准号:
    8324270
  • 财政年份:
    2010
  • 资助金额:
    $ 40.66万
  • 项目类别:
STRUCTURAL AND BIOCHEMICAL STUDIES OF PROTEIN TYROSINE PHOSPHATASE FUNCTION
蛋白质酪氨酸磷酸酶功能的结构和生化研究
  • 批准号:
    8542866
  • 财政年份:
    2010
  • 资助金额:
    $ 40.66万
  • 项目类别:
STRUCTURAL AND BIOCHEMICAL STUDIES OF PROTEIN TYROSINE PHOSPHATASE FUNCTION
蛋白质酪氨酸磷酸酶功能的结构和生化研究
  • 批准号:
    7987436
  • 财政年份:
    2010
  • 资助金额:
    $ 40.66万
  • 项目类别:
STRUCTURAL AND BIOCHEMICAL STUDIES OF PROTEIN TYROSINE PHOSPHATASE FUNCTION
蛋白质酪氨酸磷酸酶功能的结构和生化研究
  • 批准号:
    8732670
  • 财政年份:
    2010
  • 资助金额:
    $ 40.66万
  • 项目类别:

相似国自然基金

帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
  • 批准号:
    31900521
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
  • 批准号:
    31900503
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
大肠杆菌麦芽糖结合蛋白与卡介苗协同促进Th1细胞活化机制及其抑制肿瘤生长作用研究
  • 批准号:
    31170875
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
警报素(alarmin)HMGN1作为DNA疫苗佐剂的应用基础研究
  • 批准号:
    30901376
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
  • 批准号:
    10538142
  • 财政年份:
    2023
  • 资助金额:
    $ 40.66万
  • 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
  • 批准号:
    10679903
  • 财政年份:
    2023
  • 资助金额:
    $ 40.66万
  • 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
  • 批准号:
    10664707
  • 财政年份:
    2023
  • 资助金额:
    $ 40.66万
  • 项目类别:
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
  • 批准号:
    10639551
  • 财政年份:
    2023
  • 资助金额:
    $ 40.66万
  • 项目类别:
Fibroblast-mediated inflammatory resolution of rheumatoid arthritis
成纤维细胞介导的类风湿性关节炎炎症消退
  • 批准号:
    10604629
  • 财政年份:
    2023
  • 资助金额:
    $ 40.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了