Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
基本信息
- 批准号:9744967
- 负责人:
- 金额:$ 35.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnimalsBacteriaBacterial GenomeBehaviorBile AcidsBiological AssayBiosensorBorrelia burgdorferiCell Culture TechniquesCell physiologyCellsCellular biologyChemicalsCholeraCollaborationsCombating Antibiotic Resistant BacteriaCommunitiesCyclic AMPDecision MakingDevelopmentDietDinucleoside PhosphatesEnergy TransferEscherichia coliFlow CytometryFluorescenceFluorescence MicroscopyFutureGene ExpressionGenesGenomicsGoalsGrantHealth StatusHumanImageImmune responseImmune signalingIndividualIntestinesKentuckyKnowledgeLigandsLightLinkListeria monocytogenesListeriosisLyme DiseaseMammalian CellMapsMichiganMicrobial BiofilmsMicroscopeModelingMolecularNatural ImmunityOrganismOutcomePathway interactionsPeriodicityProductionProteinsRNARaceReaderReagentRegulationReportingResearchSecond Messenger SystemsSideSignal PathwaySignal TransductionSignaling MoleculeStimulator of Interferon GenesSurfaceSystemTechnologyTicksToxinTransfer RNAUnited States National Institutes of HealthVibrio choleraeWaterWorkanimal imagingaptamerarmbasebiological adaptation to stresscell motilitycellular imagingcomplex biological systemsdesigngut colonizationgut microbiotahigh throughput analysishigh throughput screeningimaging modalityimaging platformin vivoinnovationinsightinventionmicrobial communitynanomolarnovelpathogenprebioticsprogramspublic health relevanceratiometricreceptorresponsesmall moleculespatiotemporaltoolvectorwhole animal imaging
项目摘要
PROJECT SUMMARY
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
Cyclic dinucleotides (CDNs) are an emerging class of signaling molecules at the intersection of bacterial and
host interactions. Within bacterial cells, CDNs act as chemical signals that control distinct cellular programs for
colonization (cyclic di-GMP), stress response (cyclic di-AMP), and surface contact (cyclic AMP-GMP).
Furthermore, these three bacterial CDNs and a newfound mammalian CDN called cGAMP are found to stimulate
an innate immune signaling pathway in mammalian cells through a protein receptor called STING (Stimulator of
Interferon Genes). Thus, understanding how CDN levels are regulated by environmental and host inputs would
advance our knowledge of bacterial-host interactions, on both the side of bacterial pathogens and the host
immune response. However, the major roadblock to obtaining these critical mechanistic insights has been the
difficulty in observing changes in the levels of these chemical signals across scales and systems. Thus, the
broad goals of this proposal are to develop luminescent and fluorescent biosensors that enable high-throughput
analysis and imaging of CDNs from many to single cells (Aim 1), from cultures to within hosts (Aim 2), and from
individual species to communities (Aim 3). We previously established that a new type of genetically-encoded
biosensors, RNA-based fluorescent (RBF) biosensors, have sufficient sensitivity and selectivity to track and
quantitate low abundance, intracellular metabolites including CDNs. Building on our earlier invention of turn-on
RBF biosensors for cyclic di-GMP and cyclic di-AMP, we will develop design strategies to make ratiometric RBF
biosensors for these CDNs that can report on the signaling status of bacterial pathogens within hosts (Aim 2). In
collaboration with Prof. Portnoy at UC Berkeley, we will study Listeria monocytogenes, the causative agent of
listeriosis, within mammalian cells. In collaboration with Prof. Stevenson at U Kentucky, we will study Borrelia
burgdorferi, the causative agent of Lyme disease, in the tick. To enable the study of CDN signaling in diverse
bacteria and in model microbial communities, we will employ a broad-host vector system for genomic integration
of RBF biosensor genes (Aim 3). Furthermore, to enable the study of the innate immune signal cGAMP, we will
perform high-throughput selections to make novel RBF biosensors (Aim 4). Finally, we will develop
bioluminescent resonance energy transfer (BRET) biosensors that can be applied to quantitate cyclic di-GMP in
crude lysates and have future potential for whole animal imaging (Aim 1). In collaboration with Prof. Waters at
Michigan State, we will use these novel BRET biosensors to analyze the response of Vibrio cholerae, the
causative agent of cholera, to human intestinal bile acids.
项目概要
实现细菌信号的高通量分析和单细胞成像
环状二核苷酸(CDN)是一类新兴的信号分子,位于细菌和细菌的交叉点上。
主持人互动。在细菌细胞内,CDN 充当化学信号,控制不同的细胞程序
定植(环二-GMP)、应激反应(环二-AMP)和表面接触(环AMP-GMP)。
此外,这三种细菌 CDN 和一种新发现的哺乳动物 CDN(称为 cGAMP)被发现可以刺激
哺乳动物细胞中通过称为 STING(刺激物的刺激物)的蛋白质受体的先天免疫信号传导途径
干扰素基因)。因此,了解 CDN 水平如何受到环境和宿主输入的调节将有助于
增进我们对细菌与宿主相互作用的了解,包括细菌病原体和宿主
免疫反应。然而,获得这些关键机制见解的主要障碍是
很难观察这些化学信号在不同尺度和系统中的水平变化。因此,
该提案的广泛目标是开发能够实现高通量的发光和荧光生物传感器
对从多个细胞到单个细胞(目标 1)、从培养物到宿主内(目标 2)以及从
个体物种到群落(目标 3)。我们之前确定了一种新型的基因编码
生物传感器,基于RNA的荧光(RBF)生物传感器,具有足够的灵敏度和选择性来跟踪和
定量低丰度细胞内代谢物,包括 CDN。以我们早期发明的开启技术为基础
用于环二 GMP 和环二 AMP 的 RBF 生物传感器,我们将开发设计策略来制造比率 RBF
这些 CDN 的生物传感器可以报告宿主内细菌病原体的信号状态(目标 2)。在
与加州大学伯克利分校的 Portnoy 教授合作,我们将研究单核细胞增生李斯特氏菌,这是
哺乳动物细胞内的李斯特氏菌病。我们将与肯塔基大学的史蒂文森教授合作研究伯氏疏螺旋体
蜱虫体内的伯氏疏螺旋体是莱姆病的病原体。使 CDN 信号传导的研究成为可能
细菌和模型微生物群落中,我们将采用广泛宿主载体系统进行基因组整合
RBF 生物传感器基因(目标 3)。此外,为了能够研究先天免疫信号 cGAMP,我们将
进行高通量选择以制造新型 RBF 生物传感器(目标 4)。最后我们将开发
生物发光共振能量转移 (BRET) 生物传感器,可用于定量环二 GMP
粗裂解物,并具有未来用于整体动物成像的潜力(目标 1)。与沃特斯教授合作
密歇根州立大学,我们将使用这些新型 BRET 生物传感器来分析霍乱弧菌的反应,
人类肠道胆汁酸是霍乱的病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Chen Hammond其他文献
Ming Chen Hammond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Chen Hammond', 18)}}的其他基金
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10709561 - 财政年份:2017
- 资助金额:
$ 35.08万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
9368567 - 财政年份:2017
- 资助金额:
$ 35.08万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10001046 - 财政年份:2017
- 资助金额:
$ 35.08万 - 项目类别:
Enabling High-Throughput Analysis and Single-Cell Imaging of Bacterial Signals
实现细菌信号的高通量分析和单细胞成像
- 批准号:
10522177 - 财政年份:2017
- 资助金额:
$ 35.08万 - 项目类别:
A Chemical Biology Approach to Tagging RNAs in Live Cells
标记活细胞中 RNA 的化学生物学方法
- 批准号:
8146809 - 财政年份:2011
- 资助金额:
$ 35.08万 - 项目类别:
相似国自然基金
哺乳动物细胞分泌的AI-2信号类似物鉴定及其在宿主-细菌相互作用中的功能研究
- 批准号:32370134
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于口腔灌注种植体周围炎动物模型探索多细菌感染后的宿主免疫反应机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
渭河潜流带无脊椎动物-细菌协同驱动的溶解有机质迁移转化机理研究
- 批准号:42101085
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海参养殖区丝状绿潮藻、细菌和原生动物群落耦合动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
病原细菌受体激酶ThrK识别动物激素信号的机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Epitope-Based CSP Vaccines Optimized to Achieve Long-Term Sterile Immunity
经过优化的基于表位的 CSP 疫苗可实现长期无菌免疫
- 批准号:
10637778 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Divergent Calcium Channels of the Apicomplexan parasite Toxoplasma gondii
顶复门寄生虫弓形虫的不同钙通道
- 批准号:
10681807 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Auto-antibodies as predictive markers for Post treatment Lyme Disease Syndrome
自身抗体作为治疗后莱姆病综合征的预测标记
- 批准号:
10737996 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 35.08万 - 项目类别: