Biomarkers and Therapeutic Targets in Tumor Microenvironment and Metastasis

肿瘤微环境和转移中的生物标志物和治疗靶点

基本信息

  • 批准号:
    10926187
  • 负责人:
  • 金额:
    $ 119.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

As one of the crucial steps in metastatic progression requires tumor to successfully interact with its local microenvironment, it follows that targeting this cross-talk may be an attractive adjuvant to standard treatment approaches. We are focused on developing therapies that can target and modulate the associated tumor recruited host immune and stromal cells. We have an IRB approved biological repository study to obtain blood, bone marrow, tumor and adjacent normal tissue when available from patients with malignancy and healthy donors. In addition to on-going studies of measuring and characterizing the circulating bone marrow-derived progenitor, immune, endothelial and mesenchymal cells that may be altered in the setting of cancer and other chronic diseases, we have more recently been developing functional assays for human circulating monocytes. Utilizing both quantification and functional assays, including flow cytometry and immune suppression and phagocytosis assays, we are assessing the circulating bone marrow-derived myeloid cell populations in pediatric and adult patients with malignancies. We have broadened our investigations to better understand the changes in the hematopoietic stem cell niche that results in alterations in immune milieu in response to a growing primary tumor. These studies now include in addition to monitoring hematopoietic and endothelial progenitor cells but also CD4 and CD8 T cells and myeloid cells including classical, intermediate and non-classical monocytes, MDSCs and M1 and M2 macrophages and stromal cell populations. Furthermore, we measure circulating microvesicles released by tumor cells and tumor associated myeloid and stromal cells that may impact important cell behavior and are known to be critical to cell-cell communication. We have on-going investigations to explore circulating monocytes and monocyte function and the impact on metastatic risk. Our recent studies have determined host cell plasticity and cell state determine the microvesicles released from these cells and this plasticity in perivascular cells play key roles in regulating metastasis. We are currently investigating markers of this perivascular cell plasticity as a predictor of metastasis and response to conventional therapies and immune based therapies. We have on-going studies and a collaboration with Lynn Hedrick at University of Georgia examining monocyte subpopulations and functions in metastasis and as a biomarker of metastasis. We have established multiple pre-clinical models for testing microenvironment-targeting therapy in pediatric solid tumors. Utilizing a Ewings sarcoma (EWS) xenograft tumor cell line and two syngeneic models- rhabdomyosarcoma (RMS) cell line and an osteosarcoma (OS) cell line we have performed flow cytometry and immunofluorescence to demonstrate the influx of myeloid cells and alterations in stromal cell populations in the tumor and pre-metastatic tissues. We also monitor metastatic progression in a resection model using luciferase imaging. In this fashion, pre-metastatic, metastatic colonization and progression to visible metastasis can be followed and compared in treated and untreated groups without requiring multiple terminal end points. We are conducting pre-clinical investigations utilizing inhibitors targeting stromal cell plasticity specifically to assess impact on metastatic progression. We also now have a marker of tumor associated fibroblast activation and stromal cell lineage tracing mice in order to monitor activation of these cells in this process. We have performed serial in vivo mouse experiments examining modulation of myeloid cells and stromal cells to determine their impact on metastatic progression. We are using different investigational agents to determine their specific impact on each microenvironmental cell. These pre-clinical studies will answer whether this approach to treatment may likely be a good window for targeting the recruitment of these microenvironment tumor-associated cells that support tumor progression. Our studies using a colony stimulating factor -one receptor (csf1-R) inhibitor revealed that these models of RMS and Ewings sarcoma secrete a good deal of CSF-1 and lead to the recruitment of CSF-1R expressing cells. These cells are found in early metastatic sites and are immune suppressive and can protect disseminated tumor cells from cytotoxic T cell activity. We are working on developing approaches to reversing myeloid mediated immunosuppression and promote myeloid mediated anti-tumor T cell responses. We are performing studies to determine the critical effectors of this cytotoxicity. We have also established a good in vitro model to understand the role of tumor-secreted factors on myeloid cell development and stromal cell plasticity and function and investigating different approaches to modulating this process. We have studies examining myeloid cell function and exploring activators and inhibitors of these functions including the myeloid polarization process and phagocytosis. We also have studies exploring the activation and expansion of stromal cell populations that promote metastasis. We completed the Phase I portion of Pexidartinib which inihibits FLT3, Kit and CSF1R. We are now enrolling on the expanded Phase I in pediatric patients with tenosynovial giant cell tumor for open access approval for this agent for pediatric patients as it is approved for this tumor in adults. We are also actively planning a new trial to target immune suppressive myeloid cells. We have developed a new cell therapy based on genetically engineering myeloid cells (GEMys) that can be novel delivery vehicles given their propensity to accumulate in tumor and metastatic sites. These cells can be engineered to deliver Il12 into the tumor milieu and reprogram multiple cell types, change gene transcriptional signatures and reverse immune suppression and enhance anti-tumor immunity. We have developed humanized murine systems to examine human cell therapy with advanced human tumors. On going work to bring this to clinical setting is on-going and harnessing myeloid cells for introduction of signaling in tumor microenvironment. These investigations also include stromal cells and extracellular matrix remodeling. Single cell sequencing can provide exquisite detail of individual cell cluster transcriptional programs. Our laboratory has begun performing single cell sequencing of rare tumors to investigate tumor and microenvironmental interactions. Such studies can be invaluable for tumor and microenvironment genetic and non genetic interactions that provide insights to targeting cross talk and unique aspects of both tumor and associated microenvironment. We have recently leveraged the data we have generated from our first clinical trial of chimeric antigen receptor T cells targeting GD2 in patients with osteosarcoma and neuroblastoma. This collaboration with Dr. Lynn Hedrick and team now at University of Georgia and Dr. Mackall and team at Stanford has allowed deep transcriptomic, mass cytometry and epigenetic investigations into immune response in patients on CART trial. We found that myeloid cells are key regulators of the CART cells. We have that myeloid cells depending on the subpopulations and their receptors can be helpful in promoting effective anti-tumor immunity and conversely myeloid subpopulations can also limit CART expansion. These studies speak to the diversity of myeloid populations and their functions and importance of studying these aspects. These investigations are shaping a new understanding of myeloid mediators of CART expansion and may ultimately impact efficacy and serve as a path to combine myeloid and T cell based therapies. Furthermore, myeloid markers of CAR efficacy will be further explored in other clinical trials to more completely evaluate the markers across solid tumor trials.
由于转移性进展的关键步骤之一需要肿瘤成功与其局部微环境相互作用,因此,靶向这种交叉对话可能是标准治疗方法的有吸引力的辅助药。我们专注于开发可以靶向和调节相关肿瘤宿主免疫和基质细胞的疗法。我们有一项IRB认可的生物存储库研究,以获取血液,骨髓,肿瘤和邻近的正常组织,如果有恶性肿瘤和健康供体的患者。除了进行测量和表征循环骨髓衍生的祖细胞,免疫,内皮和间质细胞的研究外,在癌症和其他慢性疾病的情况下可能会改变的,我们最近还在开发用于人循环单核细胞的功能分析。利用定量和功能测定,包括流式细胞术以及免疫抑制和吞噬作用测定,我们正在评估儿科和成人恶性肿瘤患者中循环的骨髓衍生的髓样细胞种群。我们扩大了研究,以更好地了解造血干细胞生态位的变化,从而导致免疫环境改变,以应对生长的原发性肿瘤。现在,这些研究还包括监测造血和内皮祖细胞,还包括CD4和CD8 T细胞以及髓样细胞,包括经典,中间和非经典单核细胞,MDSC,M1和M1和M2巨噬细胞以及基质细胞群体。此外,我们测量肿瘤细胞释放的循环微囊泡和与髓样细胞相关的肿瘤释放,这些细胞可能影响重要的细胞行为,并且已知对细胞 - 细胞通信至关重要。我们进行了正在进行的研究,以探索循环的单核细胞和单核细胞功能以及对转移风险的影响。我们最近的研究确定了宿主细胞的可塑性和细胞状态,确定了从这些细胞释放的微囊泡,而血管周细胞中的这种可塑性在调节转移中起关键作用。我们目前正在研究这种血管周细胞可塑性的标志物作为转移的预测指标,并对常规疗法和免疫基疗法的反应进行了预测。我们进行了持续的研究,并与佐治亚大学的林恩·赫德里克(Lynn Hedrick)进行了合作,研究了转移和作为转移的生物标志物中的单核细胞亚群和功能。我们已经建立了多种临床前模型,用于测试小儿实体瘤中的微环境疗法。利用EWINGS肉瘤(EWS)异种移植肿瘤细胞系和两个同步模型-Rhabdomyosarcoma(RMS)细胞系和一个骨肉瘤(OS)细胞系我们进行了流式细胞仪和免疫荧光,以证明髓细胞细胞和骨质细胞量的膨胀,以证明髓细胞细胞和替代层的细胞群体和较大的细胞群。我们还使用荧光素酶成像监测切除模型中的转移进程。以这种方式,可以在经过治疗和未经处理的组中遵循和比较,而无需多个终端终点,可以遵循和比较对可见转移的转移和进展。我们正在利用针对基质细胞塑性的抑制剂专门评估对转移性进展的影响的抑制剂进行临床前研究。现在,我们还具有肿瘤相关的成纤维细胞激活和基质细胞谱系追踪小鼠的标记,以便在此过程中监测这些细胞的激活。我们已经进行了串行的体内小鼠实验,研究了髓样细胞和基质细胞的调节,以确定它们对转移性进展的影响。我们正在使用不同的研究剂来确定它们对每个微环境细胞的特定影响。这些临床前研究将回答这种治疗方法是否可能是靶向支持支持肿瘤进展的这些微环境肿瘤相关细胞的良好窗口。我们的研究使用菌落刺激因子 - 一个受体(CSF1-R)抑制剂表明,这些RMS和EWINGS肉瘤模型分泌了大量CSF-1,并导致募集CSF-1R表达细胞。这些细胞在早期转移性部位发现,并具有免疫抑制性,可以保护散布的肿瘤细胞免受细胞毒性T细胞活性。我们正在努力开发逆转髓样介导的免疫抑制并促进髓样介导的抗肿瘤T细胞反应的方法。我们正在进行研究以确定这种细胞毒性的关键效应因子。我们还建立了一个良好的体外模型,以了解肿瘤分泌因子对髓样细胞发育和基质细胞可塑性和功能的作用,并研究了调节这一过程的不同方法。我们进行了研究,研究了这些功能的髓样细胞功能以及探索激活剂和抑制剂,包括髓样极化过程和吞噬作用。我们还进行了研究,探讨了促进转移的基质细胞群体的激活和扩展。我们完成了pexidartinib的I期部分,该部分对FLT3,套件和CSF1R进行了不适。现在,我们正在培育学巨型细胞肿瘤的儿科患者的I阶段扩展,以便为小儿患者提供该药物的开放访问批准,因为它被批准用于成人的肿瘤。我们还积极计划一项针对免疫抑制性髓样细胞的新试验。我们已经开发了一种基于基因工程髓样细胞(GEMY)的新细胞疗法,鉴于它们倾向于在肿瘤和转移性部位积聚,因此可以是新型的递送车。可以设计这些细胞以将IL12输送到肿瘤环境中并重新编程多种细胞类型,改变基因转录特征并反向免疫抑制并增强抗肿瘤免疫力。我们已经开发了人性化的鼠系统来检查人类细胞疗法的晚期人类肿瘤。在将其带入临床环境的工作中,正在进行的和利用髓样细胞,以引入肿瘤微环境中的信号传导。这些研究还包括基质细胞和细胞外基质重塑。单细胞测序可以提供单个细胞群集转录程序的精美细节。我们的实验室已经开始对稀有肿瘤进行单细胞测序,以研究肿瘤和微环境相互作用。这些研究对于肿瘤和微环境遗传和非遗传相互作用是无价的,这些遗传和非遗传相互作用为靶向跨性别的谈话和肿瘤和相关微环境的独特方面提供了见解。最近,我们利用了我们的第一次针对骨肉瘤和神经母细胞瘤患者的嵌合抗原受体T细胞的临床试验产生的数据。与林恩·赫德里克(Lynn Hedrick)博士和现在在佐治亚大学(University of Georgia)和斯坦福大学(Stanford)的麦克尔(Mackall)和团队的团队合作,允许在CART试验中对患者的免疫反应进行深入的转录组,质量细胞术和表观遗传研究。我们发现髓样细胞是推车细胞的关键调节剂。我们认为髓样细胞取决于亚群及其受体可能有助于促进有效的抗肿瘤免疫,而相反,髓样亚群也可以限制推车的扩张。这些研究表达了髓样人群的多样性及其研究这些方面的功能和重要性。这些研究正在塑造对髓样扩张的髓样介质的新理解,并最终可能影响疗效,并成为结合髓样和T细胞疗法的途径。此外,将在其他临床试验中进一步探索汽车功效的髓样标记,以更全面地评估实体瘤试验中的标记。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy.
  • DOI:
    10.1126/scitranslmed.3007974
  • 发表时间:
    2014-05-21
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Highfill SL;Cui Y;Giles AJ;Smith JP;Zhang H;Morse E;Kaplan RN;Mackall CL
  • 通讯作者:
    Mackall CL
Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.
  • DOI:
    10.1038/ncomms7840
  • 发表时间:
    2015-04-29
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Papaspyridonos, Marianna;Matei, Irina;Huang, Yujie;Andre, Maria do Rosario;Brazier-Mitouart, Helene;Waite, Janelle C.;Chan, April S.;Kalter, Julie;Ramos, Ilyssa;Wu, Qi;Williams, Caitlin;Wolchok, Jedd D.;Chapman, Paul B.;Peinado, Hector;Anandasabapathy, Niroshana;Ocean, Allyson J.;Kaplan, Rosandra N.;Greenfield, Jeffrey P.;Bromberg, Jacqueline;Skokos, Dimitris;Lyden, David
  • 通讯作者:
    Lyden, David
Activation of Hematopoietic Stem/Progenitor Cells Promotes Immunosuppression Within the Pre-metastatic Niche.
  • DOI:
    10.1158/0008-5472.can-15-0204
  • 发表时间:
    2016-03-15
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Giles AJ;Reid CM;Evans JD;Murgai M;Vicioso Y;Highfill SL;Kasai M;Vahdat L;Mackall CL;Lyden D;Wexler L;Kaplan RN
  • 通讯作者:
    Kaplan RN
Pediatric adrenocortical carcinoma.
Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma.
  • DOI:
    10.1038/s41467-022-32491-x
  • 发表时间:
    2022-09-08
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rosandra Kaplan其他文献

Rosandra Kaplan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rosandra Kaplan', 18)}}的其他基金

Tumor Microenvironment in Cancer Progression
癌症进展中的肿瘤微环境
  • 批准号:
    8938063
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Tumor Microenvironment in Cancer Progression
癌症进展中的肿瘤微环境
  • 批准号:
    10702530
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Biomarkers and Therapeutic Targets in Angiogenesis and Metastasis
血管生成和转移中的生物标志物和治疗靶点
  • 批准号:
    10262291
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Tumor Microenvironment in Cancer Progression
癌症进展中的肿瘤微环境
  • 批准号:
    10486815
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Biomarkers and Therapeutic Targets in Angiogenesis and Metastasis
血管生成和转移中的生物标志物和治疗靶点
  • 批准号:
    10014620
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Biomarkers and Therapeutic Targets in Angiogenesis and Metastasis
血管生成和转移中的生物标志物和治疗靶点
  • 批准号:
    8349478
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Biomarkers and Therapeutic Targets in Angiogenesis and Metastasis
血管生成和转移中的生物标志物和治疗靶点
  • 批准号:
    8763462
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Biomarkers and Therapeutic Targets in Angiogenesis and Metastasis
血管生成和转移中的生物标志物和治疗靶点
  • 批准号:
    8175364
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Tumor Microenvironment in Cancer Progression
癌症进展中的肿瘤微环境
  • 批准号:
    8349476
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:
Biomarkers and Therapeutic Targets in Angiogenesis and Metastasis
血管生成和转移中的生物标志物和治疗靶点
  • 批准号:
    8938065
  • 财政年份:
  • 资助金额:
    $ 119.07万
  • 项目类别:

相似国自然基金

机器学习辅助按需设计多酶活性纳米酶用于糖尿病足溃疡治疗研究
  • 批准号:
    32371465
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
  • 批准号:
    82302153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习和肿瘤-免疫-间质生物模型的肿瘤药物联合治疗疗效预测和辅助决策研究
  • 批准号:
    72374119
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究
  • 批准号:
    82360356
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
类病毒结构纳米载体辅助A型肉毒毒素膀胱内递送治疗膀胱过度活动症的设计和应用研究
  • 批准号:
    82300874
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Adult human brain tissue cultures to study neuroHIV
成人脑组织培养研究神经艾滋病毒
  • 批准号:
    10619170
  • 财政年份:
    2023
  • 资助金额:
    $ 119.07万
  • 项目类别:
Design of a Novel Nanocarrier Technology to Drug-Load CAR T cells
用于载药 CAR T 细胞的新型纳米载体技术的设计
  • 批准号:
    10734365
  • 财政年份:
    2023
  • 资助金额:
    $ 119.07万
  • 项目类别:
Personalized vaccine immunotherapy in combination with anti-PD 1 antibody for recurrent or metastatic squamous cell carcinoma of the head and neck
个体化疫苗免疫疗法联合抗 PD 1 抗体治疗复发性或转移性头颈部鳞状细胞癌
  • 批准号:
    10658577
  • 财政年份:
    2023
  • 资助金额:
    $ 119.07万
  • 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
  • 批准号:
    10743144
  • 财政年份:
    2023
  • 资助金额:
    $ 119.07万
  • 项目类别:
Development of Potent Estrogen Receptor Beta Agonists for Treating Glioblastoma
开发用于治疗胶质母细胞瘤的有效雌激素受体β激动剂
  • 批准号:
    10594832
  • 财政年份:
    2023
  • 资助金额:
    $ 119.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了