Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
基本信息
- 批准号:9814049
- 负责人:
- 金额:$ 129.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnatomyArchitectureBehaviorBehavioralBiologicalBrush CellCellsCerebellar cortex structureCerebellumCluster AnalysisCollectionComputer SimulationDataData SetDevelopmentElectrodesElementsFiberForelimbGoalsGolgi ApparatusHealthHumanImageIndium-111InterneuronsLearningLinkMachine LearningMeasuresModelingModernizationMolecularMonkeysMotorMotor ActivityMovementMovement DisordersMusNerve DegenerationNeural Network SimulationNeuronsPatternPhysiologicalPlayPopulationPreparationPropertyPurkinje CellsRestRoleSignal TransductionSiteSmooth PursuitStrokeStructureStructure of molecular layer of cerebellar cortexSynapsesSystemTestingTimeVisionWeightWorkbasecell typeclassical conditioningcommunedesignexperimental studyeyeblink conditioningeyelid conditioninggranule cellimprovedlearned behaviormossy fibermotor controlmotor disordermotor learningneural circuitnoveloperationoptogeneticspreventrelating to nervous systemresponsestatisticstheories
项目摘要
Abstract
The cerebellum is critical for learning and executing coordinated, well-timed movements. The cerebellar
cortex seems to have a particular role in learning to time movements. Since the 1960's and 70's, we have
known the architecture of the cerebellar microcircuit, but most analyses of cerebellar function during behavior
have focused on Purkinje cells. Here, we propose to investigate the cerebellar cortex at an entirely new level
by asking how the full cerebellar microcircuit – mossy fiber, granule cells, Golgi cells, molecular layer
interneurons, and Purkinje cells – performs neural computations during motor behavior and motor learning.
We strive to “crack” the circuit by identifying all elements, recording their electrical activity during movement
and learning, and reconstructing a neural circuit model that reproduces the biological data. We will use three
established learning systems that all can learn predictive timing: classical conditioning of the eyelid response
(mice), predictive timing of forelimb movements (mice), and direction learning in smooth pursuit eye
movements (monkeys). Our proposal has six key features. First, optogenetics (in mice) will link the discharge
of different cerebellar interneurons during movement and learning to their molecular cell types. Second, a
machine-learning clustering analysis (in mice and monkeys) will find analogies among the cell populations
recorded in our three preparations and will classify neurons according to their putative cell types based on
recordings of many parameters of non-Purkinje cells during movement and motor learning. Third, multi-
contact electrodes will allow us to record simultaneously from multiple neighboring single neurons and
compute spike-timing cross-correlograms (CCGs) to identify the sign of connections; we also will look for
changes in CCGs that provide evidence of specific sites of plasticity during learning. Fourth, gCAMP imaging
of the granule cell layer will reveal the temporal structure of inputs to the cerebellar microcircuit, and
determine whether those inputs are modified in relation to motor learning. Fifth, a model neural network with
realistic cerebellar architecture will reveal a single set of model parameters that will transform the measured
inputs to the cerebellum in our three movement systems to the measured responses of all neurons in the
cerebellar cortex. Sixth, the model will elucidate how mechanisms of synaptic and cellular plasticity at
different sites in the cerebellar microcircuit work together to cause motor learning.
抽象的
小脑对于学习和执行协调、适时的运动至关重要。
自 20 世纪 60 年代和 70 年代以来,大脑皮层似乎在学习运动计时方面发挥着特殊作用。
已知小脑微电路的结构,但大多数对行为过程中小脑功能的分析
在这里,我们建议在一个全新的水平上研究小脑皮质。
通过询问完整的小脑微电路——苔藓纤维、颗粒细胞、高尔基细胞、分子层
中间神经元和浦肯野细胞 - 在运动行为和运动学习期间执行神经计算。
我们努力通过识别所有元件、记录其运动过程中的电活动来“破解”电路
学习和重建重现生物数据的神经回路模型我们将使用三个。
建立了所有人都可以学习预测时间的学习系统:眼睑反应的经典调节
(小鼠)、前肢运动的预测时间(小鼠)以及平滑追踪眼中的方向学习
我们的建议有六个主要特征,光遗传学(在小鼠中)将放电联系起来。
不同小脑中间神经元在运动和学习其分子细胞类型期间的变化。
机器学习聚类分析(在小鼠和猴子中)将发现细胞群之间的相似性
记录在我们的三个准备工作中,并将根据神经元的假定细胞类型对神经元进行分类
在运动和运动学习过程中记录非浦肯野细胞的许多参数。
接触电极将使我们能够同时记录多个相邻的单个神经元
计算尖峰时序互相关图(CCG)来识别我们还将寻找的连接符号;
CCG 的变化提供了学习过程中特定可塑性部位的证据。第四,gCAMP 成像。
颗粒细胞层的研究将揭示小脑微电路输入的时间结构,并且
第五,模型神经网络是否与运动学习相关。
真实的小脑结构将揭示一组模型参数,这些参数将改变测量的结果
我们三个运动系统中小脑的输入对所有神经元的测量反应
第六,该模型将阐明突触和细胞可塑性的机制。
小脑微电路中的不同部位协同工作以引起运动学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Brunel其他文献
Nicolas Brunel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Brunel', 18)}}的其他基金
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
9976609 - 财政年份:2019
- 资助金额:
$ 129.05万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10397037 - 财政年份:2019
- 资助金额:
$ 129.05万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10614484 - 财政年份:2019
- 资助金额:
$ 129.05万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10155611 - 财政年份:2019
- 资助金额:
$ 129.05万 - 项目类别:
Large-scale, neuronal ensemble recordings in motor cortex of the behaving marmoset
行为狨猴运动皮层的大规模神经元整体记录
- 批准号:
10321250 - 财政年份:2018
- 资助金额:
$ 129.05万 - 项目类别:
Large-scale, neuronal ensemble recordings in motor cortex of the behaving marmoset
行为狨猴运动皮层的大规模神经元整体记录
- 批准号:
10083242 - 财政年份:2018
- 资助金额:
$ 129.05万 - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9975922 - 财政年份:2018
- 资助金额:
$ 129.05万 - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9792300 - 财政年份:2018
- 资助金额:
$ 129.05万 - 项目类别:
Learning spatio-temporal statistics from the environment in recurrent networks
从循环网络中的环境中学习时空统计数据
- 批准号:
9170047 - 财政年份:2016
- 资助金额:
$ 129.05万 - 项目类别:
Learning spatio-temporal statistics from the environment in recurrent networks
从循环网络中的环境中学习时空统计数据
- 批准号:
9170047 - 财政年份:2016
- 资助金额:
$ 129.05万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Lateral prefrontal organization in emotion: representational and causal mechanisms
情绪中的外侧前额叶组织:表征和因果机制
- 批准号:
10723060 - 财政年份:2023
- 资助金额:
$ 129.05万 - 项目类别:
Genetic and biophysical analysis of morphogen gradient formation
形态素梯度形成的遗传和生物物理分析
- 批准号:
10723239 - 财政年份:2023
- 资助金额:
$ 129.05万 - 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
- 批准号:
10828665 - 财政年份:2023
- 资助金额:
$ 129.05万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 129.05万 - 项目类别:
VTA dopamine connectivity and functional responses to drugs of abuse
VTA 多巴胺连接和对滥用药物的功能反应
- 批准号:
10665966 - 财政年份:2023
- 资助金额:
$ 129.05万 - 项目类别: