A Single-Sided Magnetic Particle Imaging Scanner for In Vivo Breast Cancer Imaging
用于体内乳腺癌成像的单面磁粒子成像扫描仪
基本信息
- 批准号:9812008
- 负责人:
- 金额:$ 16.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-03 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAgreementAlgorithmsAngiographyAnimalsApplications GrantsAreaAutomationBlood capillariesBreastBreast Cancer DetectionBreast biopsyCalibrationClinicalClinical ResearchComputer InterfaceComputersConsumptionDetectionDevicesDiagnosticDiagnostic ImagingDiagnostic ProcedureEngineeringEnvironmentGeometryGoalsGrantHeightHospitalsHumanHuman bodyHyperthermiaImageImaging DeviceImaging PhantomsImaging TechniquesImaging technologyInflammationIonizing radiationLymphatic SystemMagnetic Resonance ImagingMagnetic nanoparticlesMagnetismMammary NeoplasmsMeasuresMedical ImagingMethodsModificationMotorMusNoiseOrganPenetrationPerformancePopulationProceduresResearchResolutionRodentRotationSafetyScreening procedureSentinel Lymph Node BiopsySideSignal TransductionSourceStagingSurfaceSystemTestingTherapeutic InterventionThree-Dimensional ImagingTracerTranslatingTranslationsValidationWomen&aposs HealthWorkbasecancer imagingclinical applicationclinical practiceclinical translationclinically relevantdata acquisitiondesignimage reconstructionimagerimaging modalityimaging studyimaging systemimprovedin vivoin vivo imaginginterestiron oxide nanoparticlemagnetic fieldmalignant breast neoplasmnanoparticlenovelparticleportabilityprogramsprototypescale upsimulationspatiotemporaltomographytooltumorundergraduate student
项目摘要
Magnetic Particle Imaging (MPI) is an emerging non-invasive tomographic imaging modality; like CT or MRI, it
could be applied in clinical and research settings as a safe diagnostic technique, but without ionizing radiation
or toxic tracers. One of the major MPI challenges toward clinical translation has been the ability to scale up the
coils to surround a human body while being able to generate and drive the sufficiently strong magnetic field
gradient required for high spatial resolution. These requirements, however, demand prohibitively high power
consumption in a device with cylindrical geometry; therefore, alternative topologies, such as an open geometry
scanner, would be highly desirable. The goal of this proposal is to develop a novel single-sided MPI imager
and demonstrate in vivo cancer imaging in rodents. The single-sided device has all the hardware on one side
of the imaging volume; therefore, such a device can be used equally well on small animals and humans for
multidimensional diagnostic imaging and as an MPI spectrometer (MPS). In our unique approach, we will
develop a single-sided MPI imager with much more promising field topology, namely, field-free line (FFL) as
opposed to the more common and relatively easier to implement field-free point (FFP) geometry, for a potential
10-fold increase of SNR, more robust image reconstruction, and larger field of view.
To date, we have built a first prototype of a single-sided coils assembly with the FFL geometry that consists of
all the required coils in a unilateral configuration. The measured magnetic field showed perfect agreement with
the simulations. We further validated our device by demonstrating magnetic particle signal detection using a
point-source phantom. Developing a fully capable multidimensional scanner based on single-sided geometry
has direct clinical relevance in breast cancer imaging. We pursue two specific aims: 1) Develop a
multidimensional imaging technique, which can be implemented in our single-sided device. The main
objectives of this aim are to drastically increase the sensitivity of the device and identify an imaging sequence
that combines both selection and excitation coils and works in tandem with our unique surface-coil receive
approach. We will implement the required hardware modification and signal automation. 2) Validate the
imaging method by obtaining the MPI images. The performance of the MPI scanner will be analyzed using
phantoms with iron oxide nanoparticles. Finally, we will validate the scanner performance in in vivo imaging of
breast tumor-bearing mice.
The overall strength of the proposed research lies in developing the first ever MPI scanner that could
potentially be translated to clinical settings. Specifically, we hope to deliver a more sensitive and non-invasive
tool for breast cancer screening that has a direct impact on women health.
磁粒子成像(MPI)是一种新兴的非侵入性断层扫描成像方式;像 CT 或 MRI 一样,
可以作为一种安全的诊断技术应用于临床和研究环境,但无需电离辐射
或有毒示踪剂。 MPI 临床转化面临的主要挑战之一是扩大临床转化规模的能力
线圈环绕人体,同时能够产生和驱动足够强的磁场
高空间分辨率所需的梯度。然而,这些要求需要极高的功率
具有圆柱形几何形状的装置的消耗;因此,替代拓扑,例如开放几何结构
扫描仪,将是非常理想的。该提案的目标是开发一种新型单面 MPI 成像仪
并展示啮齿类动物的体内癌症成像。单面设备将所有硬件都集中在一侧
成像体积;因此,这种装置同样适用于小动物和人类
多维诊断成像和 MPI 光谱仪 (MPS)。以我们独特的方法,我们将
开发一种具有更有前景的场拓扑的单面 MPI 成像器,即无场线 (FFL)
与更常见且相对更容易实现的无场点(FFP)几何形状相反,对于潜在的
信噪比提高 10 倍,图像重建更稳健,视野更大。
迄今为止,我们已经构建了第一个单面线圈组件原型,其 FFL 几何形状包括:
所有所需的线圈均采用单边配置。测量的磁场与
模拟。我们通过使用磁粉信号检测来进一步验证我们的设备
点源幻象。开发基于单面几何结构的功能齐全的多维扫描仪
在乳腺癌成像中具有直接的临床意义。我们追求两个具体目标:1) 开发
多维成像技术,可以在我们的单面设备中实现。主要
该目标的目标是大幅提高设备的灵敏度并识别成像序列
结合了选择线圈和励磁线圈,并与我们独特的表面线圈接收协同工作
方法。我们将实施所需的硬件修改和信号自动化。 2) 验证
通过获取MPI图像的成像方法。 MPI 扫描仪的性能将使用以下方法进行分析
具有氧化铁纳米颗粒的模型。最后,我们将验证扫描仪在活体成像中的性能
患有乳腺肿瘤的小鼠。
拟议研究的整体优势在于开发第一台 MPI 扫描仪,该扫描仪可以
可能会转化为临床环境。具体来说,我们希望提供一种更加灵敏和非侵入性的
乳腺癌筛查工具,对女性健康有直接影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey A Tonyushkin其他文献
Alexey A Tonyushkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey A Tonyushkin', 18)}}的其他基金
A Single-Sided Magnetic Particle Imaging Scanner for In Vivo Breast Cancer Imaging
用于体内乳腺癌成像的单面磁粒子成像扫描仪
- 批准号:
10485437 - 财政年份:2021
- 资助金额:
$ 16.81万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
IOPSxV: Novel Visualization for Non-Fluoroscopic 3D Image Guidance for Peripheral Vascular Interventions.
IOPSxV:用于外周血管干预的非透视 3D 图像指导的新型可视化。
- 批准号:
9908555 - 财政年份:2020
- 资助金额:
$ 16.81万 - 项目类别:
Thermoacoustic Range Verification During Delivery of a Clinical Plan by a Synchrocyclotron: transition from research prototype to turnkey clinical device
同步回旋加速器交付临床计划期间的热声范围验证:从研究原型到交钥匙临床设备的过渡
- 批准号:
10600975 - 财政年份:2019
- 资助金额:
$ 16.81万 - 项目类别:
4D Flow MRI for characterization of brain arteriovenous malformations
4D Flow MRI 用于表征脑动静脉畸形
- 批准号:
10189688 - 财政年份:2018
- 资助金额:
$ 16.81万 - 项目类别:
Head-mounted Activity Monitoring(HAM)System Fast Track
头戴式活动监测(HAM)系统快速通道
- 批准号:
9077885 - 财政年份:2014
- 资助金额:
$ 16.81万 - 项目类别:
Head-mounted Activity Monitoring(HAM)System Fast Track
头戴式活动监测(HAM)系统快速通道
- 批准号:
9105328 - 财政年份:2014
- 资助金额:
$ 16.81万 - 项目类别: