Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
基本信息
- 批准号:9328183
- 负责人:
- 金额:$ 84.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectArchitectureAwardBedsBehavioralBiomedical EngineeringBrainCarbonCellsChemicalsChronicCicatrixCorpus striatum structureDataDevelopmentDevicesDiagnosticDopamineElectrical EngineeringElectrochemistryElectrodesElectronicsElectrophysiology (science)ElementsFluorescent DyesGenerationsGeometryGoalsHealthHistologicHumanImmune responseImmunohistochemistryImplantIn SituIndividualInvestigationJointsLearningMammalsMeasuresMental disordersMethodsModalityModelingMonitorMotivationMotor CortexNeuromodulatorNeuronsNeurosciencesOpioid ReceptorPeriodicityPlayPreparationPsychological reinforcementRattusReactionResearchResolutionRewardsRoleSamplingScanningSeriesSignal TransductionSiliconSiteSliceStructureTechniquesTestingTimeUpdateWorkbrain tissuecarbon fibercell assemblydensityexperimental studyimplantationinformation processinginnovationmultimodalitynanofabricationnervous system disorderneural circuitneural prosthesisneurochemistryneurophysiologynovelpre-clinicalpreventpublic health relevancerelating to nervous systemskillsstriosometheoriestime usetool
项目摘要
DESCRIPTION (provided by applicant): A major goal in neuroscience is to understand the computations performed by local brain circuits. A large obstacle to achieving this goal is that - at least in mammals - we currently cannot observe the spiking activity of most neurons within a circuit. A key reason is that standard electrodes are just too big, and provoke too much damage to brain tissue. If placed with high enough density to sample a majority of neurons, they would destroy the very circuit they are intended to monitor. Another important obstacle to understanding local brain computations is that circuit dynamics are rapidly and dramatically altered by chemical neuromodulators, which normally go unobserved. Real-time monitoring of critical modulators such as dopamine can be achieved using fast-scan cyclic voltammetry, but this method has not yet been effectively combined with large-scale circuit recordings. The proposed work would make important progress towards overcoming these obstacles, using ultra-dense arrays of 8µm carbon thread electrodes. These are stiff enough to insert deep into the brain, yet small enough to avoid a destructive immune response. By using an 80µm distance between electrodes, the great majority of neurons within a cortical layer would be within recording range. Furthermore, carbon thread electrodes are well-suited for chemical sensing using voltammetry. This proposal is to construct advanced new tools for neuroscientific investigation in a series of modular steps, culminating in 1024-channel, combined electrophysiological and electrochemical recording in freely-behaving rats. Aim 1 involves the development and testing of silicon frameworks that allow assembly of ultra-dense arrays, together with updated headstages that allow hundreds of channels to be monitored simultaneously. Aim 2 will exploit the ability of carbon thread electrodes to be sliced in situ during histological processing. This greatly facilitates the ability to localize individual recordig sites within microcircuit architecture, and to identify individual recorded neurons. Aim 3 involves further optimization of carbon thread electrodes for chemical sensing, and joint single-unit recording and fast-scan cyclic voltammetry across many electrodes simultaneously. Overall this project combines expertise in electrical engineering, neurophysiology, and neurochemistry to create innovative, powerful devices that will be widely disseminated and may have transformational impact for our understanding of how our brains work.
描述(由申请人提供):神经科学的一个主要目标是理解局部大脑回路执行的计算,实现这一目标的一个巨大障碍是——至少在哺乳动物中——我们目前无法观察到大多数神经元的尖峰活动。一个关键原因是标准电极太大,会对脑组织造成太大损伤,如果放置的密度足够高以对大多数神经元进行采样,它们会破坏它们要监测的电路。了解当地的障碍大脑计算的一个特点是,化学神经调节剂会迅速而显着地改变电路动力学,而化学神经调节剂通常无法观察到,使用快速扫描循环伏安法可以实现对多巴胺等关键调节剂的实时监测,但该方法尚未与化学神经调节剂有效结合。拟议的工作将在克服这些障碍方面取得重要进展,使用超密集的 8μm 碳线电极阵列,这些电极的硬度足以插入大脑深处,但又足够小。通过使用电极之间的 80μm 距离,皮层内的绝大多数神经元将在记录范围内,此外,碳线电极非常适合使用伏安法进行化学传感。通过一系列模块化步骤进行神经科学研究的新工具,最终在自由行为的大鼠中实现 1024 通道、组合电生理学和电化学记录,目标 1 涉及硅框架的开发和测试,该框架允许。超密集阵列的组装以及允许同时监测数百个通道的更新探头将利用碳丝电极在组织学处理过程中进行原位切片的能力,这极大地促进了个体定位的能力。目标 3 涉及进一步优化用于化学传感的碳线电极,以及同时跨多个电极的联合单单元记录和快速扫描循环伏安法。结合了电气工程、神经生理学和神经化学方面的专业知识,创造出创新、强大的设备,这些设备将被广泛传播,并可能对我们对大脑工作方式的理解产生变革性影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA D BERKE其他文献
JOSHUA D BERKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA D BERKE', 18)}}的其他基金
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
9896798 - 财政年份:2018
- 资助金额:
$ 84.71万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10456214 - 财政年份:2018
- 资助金额:
$ 84.71万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10660140 - 财政年份:2018
- 资助金额:
$ 84.71万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10132277 - 财政年份:2018
- 资助金额:
$ 84.71万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9147004 - 财政年份:2015
- 资助金额:
$ 84.71万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9012524 - 财政年份:2015
- 资助金额:
$ 84.71万 - 项目类别:
Basal Ganglia Pathways for Stopping and Switching
基底神经节通路的停止和切换
- 批准号:
8743281 - 财政年份:2013
- 资助金额:
$ 84.71万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 84.71万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 84.71万 - 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 84.71万 - 项目类别:
Peptibodies As Novel Therapies in Atrial Fibrillation
肽体作为心房颤动的新疗法
- 批准号:
10598711 - 财政年份:2023
- 资助金额:
$ 84.71万 - 项目类别:
Investigating Astrocytic Glutamate and Potassium Dynamics in the Healthy and Injured Brain
研究健康和受伤大脑中星形胶质细胞谷氨酸和钾的动态
- 批准号:
10754425 - 财政年份:2023
- 资助金额:
$ 84.71万 - 项目类别: