Smart and self-reporting clinical nano carriers for drug delivery
用于药物输送的智能和自我报告的临床纳米载体
基本信息
- 批准号:9302146
- 负责人:
- 金额:$ 71.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAnimal ModelBiological AvailabilityCessation of lifeChelating AgentsClinicClinicalComplementContrast MediaCoupledDataDextransDiseaseDoseDrug Delivery SystemsDrug ExposureDrug ModelingsDrug MonitoringElectrostaticsEnsureEnvironmentFailureFormulationFutureGadoliniumHeat-Shock Proteins 90HydrophobicityImageInjectableIronKineticsLabelLinkLiverMagnetic Resonance ImagingMalignant NeoplasmsMediatingMethodsModelingMolecular WeightMonitorMusPatient Self-ReportPatientsPeptidesPermeabilityPharmaceutical PreparationsPharmacotherapyPhysiciansPositron-Emission TomographyPropertyPublic HealthQuality of lifeRadiolabeledReportingSignal TransductionSystemSystemic TherapyTestingTherapeutic IndexTimeToxic effectTranslatingTreatment EfficacyTumor TissueValidationWorkbaseblindcancer therapyclinical translationcontrolled releasecostcytotoxicdosagedrug developmentdrug efficacyexperimental studyimaging modalityimprovedin vivoindividual patientinhibitor/antagonistinsightiron oxidekillingsnanocarriernanoparticleneoplastic cellnovel strategiesparticlepredicting responseresponsesystemic toxicitytargeted treatmenttheranosticstherapy developmenttreatment strategytumortumor microenvironment
项目摘要
Abstract: The problem: Most cancers kill patients because of metastatic disease, which requires systemic
therapy. However, systemic therapy approaches suffer from dosing limitations – due to reaching unacceptable
cytotoxic side effects before complete tumor death. To address this deficiency, nanoparticles are particularly
promising – to deliver more drug to tumor cells while sparing non-tumor cells from drug exposure. An “ideal”
nanoparticle carrier would (i) be a clinically approved agent able to carry clinically approved drugs for facile
clinical translation, (ii) deliver drugs preferentially to tumors to attain highly efficacious concentrations without
systemic toxicity, (iii) have a drug release mechanism for controlled release, and (iv) provide confirmation of
drug delivery so physicians will know if efficacious quantities of drug were delivered, e.g. to adapt dosing or
predict response. Yet, more often than not, particles are not clinically approved; drugs are covalently coupled
to particles and require cleavage for release (altering approved formulations of both); there is no defined
release mechanism; or there is no way to monitor actual drug release and thus delivery of active drug in
patients. Proposed solution: We have developed a drug delivery method with potential “ideal” delivery
features. This method is based on clinically approved nanoparticles and is characterized by improved therapy
efficacy, a release mechanism triggered by the tumor, and the ability to self-report the release of the drug in
the tumor through magnetic resonance imaging (MRI). Our nanocarriers are the clinically approved iron oxide
nanoparticle Feraheme and clinically used high molecular weight dextran. Both retain small hydrophobic drugs
through electrostatic interactions (i.e. without change in compositions) and release them in a tumor
environment. Our hypothesis is that the nanocarriers will deliver higher amounts of drugs selectively to tumors
as compared to free-drug and that imaging will be effective at monitoring drug delivery and release. In addition
to MRI multiplexed PET (mPET) will allow us to simultaneously image and quantify radiolabeled drug and
radiolabeled nanocarrier. In Aim 1, we will use mPET/MRI to quantitatively monitor delivery, release and fate of
drug and nanocarrier within orthotopic tumor models. In Aim 2, we will apply mPET/MRI to evaluate if targeted
therapy results in higher drug delivery compared to passive, non-targeted delivery, and in Aim 3, we will
explore if MRI of drug release can predict the therapy response by probing the tumors microenvironment and
receptiveness for nanocarrier-mediated therapy, tailoring nanocarrier-based therapy personally to each patient.
This approach will provide valuable insight into the in vivo kinetics of nanocarrier and drug that cannot be
obtained otherwise. We will obtain essential data for in vivo drug delivery and therapy response with high
potential to improve cancer therapy. This work can be easily translated into clinic. Patients undergoing cancer
therapy could be in the near future imaged with drug-loaded nanocarrier to evaluate if their tumors will be
suitable for such a therapy - essentially to realize much of the promise provided by nanoparticles.
摘要:问题:大多数癌症因转移性疾病而导致患者死亡,这需要全身治疗
然而,全身治疗方法由于剂量达到不可接受的程度而受到限制。
为了解决这一缺陷,纳米颗粒特别适合在肿瘤完全死亡之前产生细胞毒性副作用。
– 向有希望的肿瘤细胞输送更多药物,同时使非肿瘤细胞免受药物暴露的“理想”。
纳米颗粒载体将(i)是一种临床批准的试剂,能够携带临床批准的药物以方便地使用
临床转化,(ii)优先将药物递送至肿瘤以获得高效浓度,而无需
全身毒性,(iii) 具有控释药物释放机制,以及 (iv) 提供以下确认:
药物输送,以便医生知道是否输送了有效量的药物,例如调整剂量或
然而,粒子通常是未经临床批准的共价偶联药物;
颗粒并需要裂解释放(改变两者的批准配方);
释放机制;或者没有办法监测实际的药物释放,从而监测活性药物的输送。
建议的解决方案:我们开发了一种具有潜在“理想”输送的药物输送方法。
该方法基于临床批准的纳米颗粒,其特点是改进的治疗方法。
功效、肿瘤触发的释放机制以及自我报告药物释放的能力
我们的纳米载体是经过临床批准的氧化铁。
纳米颗粒Feraheme和临床上使用的高分子量右旋糖酐都保留了小的疏水性药物。
通过静电相互作用(即不改变成分)并将它们释放到肿瘤中
我们的假设是纳米载体将选择性地向肿瘤递送更多的药物。
与游离药物相比,成像还可以有效监测药物的输送和释放。
MRI 多重 PET (mPET) 将使我们能够同时对放射性标记药物和
在目标 1 中,我们将使用 mPET/MRI 定量监测放射性标记纳米载体的递送、释放和命运。
在目标 2 中,我们将应用 mPET/MRI 来评估原位肿瘤模型中的药物和纳米载体是否具有靶向性。
与被动、非靶向递送相比,治疗可产生更高的药物递送,在目标 3 中,我们将
探索药物释放的 MRI 是否可以通过探测肿瘤微环境来预测治疗反应
对纳米载体介导的治疗的接受度,为每位患者量身定制基于纳米载体的治疗。
这种方法将为纳米载体和药物的体内动力学提供有价值的见解,而这是无法
我们将通过其他方式获得体内药物递送和治疗反应的重要数据。
这项工作可以很容易地转化为癌症患者的临床治疗。
在不久的将来,治疗可能会用载药纳米载体进行成像,以评估他们的肿瘤是否会被治愈。
适合这种疗法——本质上是为了实现纳米颗粒所提供的大部分希望。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Grimm其他文献
Jan Grimm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Grimm', 18)}}的其他基金
Cerenkov 2.0 – Cerenkov-activated agents for imaging and therapy
Cerenkov 2.0 — 用于成像和治疗的 Cerenkov 激活剂
- 批准号:
10644155 - 财政年份:2022
- 资助金额:
$ 71.4万 - 项目类别:
Exploring PSMA Biology in Tumor neovasculature
探索肿瘤新生血管中的 PSMA 生物学
- 批准号:
9380403 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
Exploiting ferroportin for cancer imaging and therapy
利用铁转运蛋白进行癌症成像和治疗
- 批准号:
10170300 - 财政年份:2017
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8441561 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8607183 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8788930 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
Cerenkov-emission based nanosensors to detect biologic activities in vivo
基于切伦科夫发射的纳米传感器检测体内生物活性
- 批准号:
8276113 - 财政年份:2012
- 资助金额:
$ 71.4万 - 项目类别:
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Optogenetic and chemogenetic regulation of uterine vascular function
子宫血管功能的光遗传学和化学遗传学调控
- 批准号:
10785667 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Understanding the Relationship Between Environmental Endocrine Disrupting Chemicals, Neuropsychiatric Outcomes, and Related Biological Processes in Depression
了解环境内分泌干扰化学物质、神经精神结果和抑郁症相关生物过程之间的关系
- 批准号:
10739590 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Role of synaptic density in mediating the relation between social disconnection and late-life suicide risk
突触密度在调节社会脱节与晚年自杀风险之间关系中的作用
- 批准号:
10598338 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 71.4万 - 项目类别: