Optimization of genetic modification of HSCs in the NHP model and creation of relevant preclinical models of human disease and therapies

NHP模型中HSC基因修饰的优化以及人类疾病和治疗相关临床前模型的创建

基本信息

项目摘要

My research group has worked for over 32 years in the laboratory and in the clinic to develop safe and effective gene therapies directed at hematopoietic stem and progenitor cells (HSPC). In the rhesus macaque model, shown to be the only predictive assay for human clinical results, we have focused on optimizing both lentiviral gene addition and gene editing therapies targeting hematopoietic stem and progenitor cells, and on understanding and enhancing the safety of established and new gene therapy systems. Given the potential for genotoxicity with random integration of lentiviral vectors, and other drawbacks of semi-random gene addition as compared to targeted gene correction approaches, we have utilized the rhesus macaque to explore CRISPR/Cas9 genome editing and more recently base editing to create disease models and to develop gene editing therapies targeting HSPC. We have optimized CRISPR/Cas9 gene editing and base editing of rhesus CD34+ HSPC, initially knocking out loci via CRISPR/CAs-induced non-homologous end joining repair, creating loss-of function indels, and now focusing on improving the safety and efficacy of HDR-mediated gene correction and of single mutation-directed base editing. We have successfully engrafted 22 animals with gene-edited cells, with long-term levels of up to 70-90% for blood cells with targeted NHEJ indels. We have focused on investigating the quantitative adverse impact of gene editing on the engraftment and long-term function of HSPCs in the macaque model. Using quantitative barcoding together with gene editing, we have demonstrated marked loss of functional HSPC numbers with both NHEJ but even more markedly HDR editing, and thus far less adverse impact on HSPCs with base editing, which does not result in double stranded DNA breaks. We have created a robust macaque model of clonal hematopoiesis by targeting DNMT3, TET2 and ASXL1 with CRISPR/Cas9 mediated editing to create loss of function mutations. We have shown marked clonal expansion of TET2 mutated clones in three animals, and less marked expansion of DNMT2 or ASXL1 edited clones, and we have documented a highly inflammatory phenotype for TET2 mutant myeloid cells, relevant to the increased risk of cardiovascular disease in CHIP patients. We have multiple ongoing studies to investigate the biology of clonal expansion in these animals, and have shown that treatment with tociluzumab reverses or slows clonal expansion due to TET2 deficiency in this model (Shin et al, Blood, 2022). We hypothesized that clonal hematopoiesis accompanied by an inflammatory phenotype could be associated with severe COVID-19 disease, and carried out pilot studies investigating this using our macaque clonal hematopoiesis model, comparing outcomes of SARS-CoV-2 infection in clonal hematopoiesis versus control animals, documenting higher levels of virus in tissue and shed in the lungs (Shin et al, 2023). We have also carried out a large scale targeted sequencing study of rhesus macaque blood cells from cohorts of aged animals, use deep error-corrected sequencing to look at 56 clonal hematopoiesis genes initially identified in aging humans. We have uncovered for the first time a natural animal model of clonal hematopoiesis, showing exactly the same genes mutated as in humans, in contrast to lack of such mutations in rodent models (Shin et al, Blood, 2022). We extended these studies to human cohorts in terms of analyzing the relationship between COVID-19 severity and the presence of clonal hematopoiesis, and in the largest and most definitive study to date, did not demonstrate an impact on COVID-19 severity (Zhou et al, Blood, 2022). We have also developed a gene editing macaque model for RUNX1 deficiency in order to better understand the biology of the inherited marrow failure/leukemia predisposition syndrome and to assess the feasibility of gene therapies in correcting the phenotype, asking whether mutant vs normal cells predominate over time in a chimeric state. Mutant cells predominate, a concerning finding for gene therapies of this condition (Lee et al, Blood, 2023). This model also recapitulates the platelet and HSPC phenotype of human RUNX1 deficiency, in contrast to murine models. A recent report linked clonal hematopoiesis to surprisingly a decreased risk of Alzheimer's disease, and postulated that CH myeloid cells were more potent in entering or functioning in the brain to prevent accumulation of amyloid or tau plaques. We have utilized our macaque CH model and control barcoded non-CH animals to investigate TET2 or other CH mutations results in higher replacement of microglial cells in the brain by analyzing purified macaque microglial cells for CH mutations compared to levels in blood myeloid cells. We have not found enhancement of microglial replacement by HSPC-derived cells in the setting of CH. Mechanistic studies are ongoing.
我的研究小组在实验室和诊所工作了32年以上,以开发针对造血干细胞和祖细胞(HSPC)的安全有效的基因疗法。在显示为人类临床结果的唯一预测测定的恒河猴猕猴模型中,我们专注于优化针对造血干细胞和祖细胞的慢病毒基因添加和基因编辑疗法,以及理解和增强已建立和新基因疗法系统的安全性。 与靶向基因校正方法相比,鉴于与慢病毒载体随机整合的潜力以及半随机基因添加的其他缺点,我们已经利用了恒河猴来探索CRIS/CAS9基因组编辑,最近的基础编辑和更多的基础编辑来创建疾病模型,以创建基因编辑基因编辑疗法,以培训Hspc。我们已经优化了Rhesus CD34+ HSPC的CRISPR/CAS9基因编辑和基础编辑,最初通过CRISPR/CAS诱导的非同源最终连接修复,创造功能丧失,并着重于提高HDR介导的基因校正和单个突变基碱基的安全性和有效性。 我们已经成功地植入了具有基因编辑细胞的22只动物,靶向NHEJ indels的血细胞长期水平高达70-90%。 我们专注于研究基因编辑对猕猴模型中HSPC的植入和长期功能的定量不利影响。使用定量条形码与基因编辑一起,我们证明了具有NHEJ的功能性HSPC数的明显损失,但更明显的HDR编辑,因此对具有基础编辑的HSPC的不利影响较小,这不会导致双重滞后DNA断裂。 我们通过用CRISPR/CAS9介导的编辑来靶向DNMT3,TET2和ASXL1来创建克隆造血的强大猕猴模型,从而造成功能突变的丧失。我们已经显示了三只动物中TET2突变克隆的克隆膨胀,而DNMT2或ASXL1编辑的克隆的显着膨胀较少,我们记录了TET2突变髓样细胞的高度炎性表型,与CHIP患者心血管疾病风险增加有关。 我们进行了多项正在进行的研究,以研究这些动物克隆膨胀的生物学,并表明,由于TECILUZUMAB逆转或减慢了由于TET2缺乏症而减慢克隆膨胀的治疗(Shin等,血液,2022年)。 We hypothesized that clonal hematopoiesis accompanied by an inflammatory phenotype could be associated with severe COVID-19 disease, and carried out pilot studies investigating this using our macaque clonal hematopoiesis model, comparing outcomes of SARS-CoV-2 infection in clonal hematopoiesis versus control animals, documenting higher levels of virus in tissue and shed in the lungs (Shin et al, 2023)。 我们还对来自老年动物队列的恒河猕猴血细胞进行了大规模的靶向测序研究,使用深层校正的测序来查看最初在衰老的人中鉴定出的56个克隆造血基因。 我们首次发现了克隆造血的天然动物模型,与人类中的基因完全相同,与啮齿动物模型中缺乏这种突变相比(Shin等人,血液,2022年)。我们将这些研究扩展到人类人群,以分析Covid-19的严重程度与克隆造血的存在之间的关系,并且在迄今为止最大,最明确的研究中,并未证明对Covid-19的严重程度有影响(Zhou等人,血液,2022222)。 我们还开发了一种用于Runx1缺乏症的基因编辑猕猴模型,以便更好地了解遗传性骨髓衰竭/白血病倾向综合征的生物学,并评估基因疗法在纠正表型中的可行性,询问突变体是否在杂物状态下是否会随着时间的流逝而占正常细胞。突变细胞占主导地位,这是关于这种疾病基因疗法的发现(Lee等人,血液,2023年)。与鼠模型相比,该模型还概括了人Runx1缺乏症的血小板和HSPC表型。 最近的一份报告将克隆造血的疾病与令人惊讶的降低了阿尔茨海默氏病的风险,并假设CH髓样细胞在大脑中进入或功能更有效,以防止淀粉样蛋白或TAU斑块的积累。我们利用了猕猴的CH模型和对照条形码的非CH动物来研究TET2或其他CH突变,通过分析与血液髓样细胞中的水平相比,通过分析纯化的猕猴的小胶质细胞来替代大脑中的小胶质细胞。在CH的情况下,我们尚未发现HSPC衍生细胞对小胶质细胞的替代增强。 机械研究正在进行中。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two Decades of ASGCT: Dreams Become Reality.
ASGCT 的两个十年:梦想变成现实。
A plethora of gene therapies for hemoglobinopathies.
大量针对血红蛋白病的基因疗法。
  • DOI:
    10.1038/s41591-021-01235-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Dunbar,CynthiaE
  • 通讯作者:
    Dunbar,CynthiaE
No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells.
  • DOI:
    10.1002/stem.322
  • 发表时间:
    2010-04
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Winkler, Thomas;Cantilena, Amy;Metais, Jean-Yves;Xu, Xiuli;Nguyen, Anh-Dao;Borate, Bhavesh;Antosiewicz-Bourget, Jessica E.;Wolfsberg, Tyra G.;Thomson, James A.;Dunbar, Cynthia E.
  • 通讯作者:
    Dunbar, Cynthia E.
Thrombopoietic status of patients on haemodialysis.
血液透析患者的血小板生成状态。
  • DOI:
    10.1111/bjh.13918
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Bat,Taha;Bat,BetulE;El-Moghraby,Ahmed;Patel,Samir;Feng,Xingmin;Dunbar,CynthiaE;Sarac,Erdal
  • 通讯作者:
    Sarac,Erdal
Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity.
  • DOI:
    10.1007/s11684-011-0159-1
  • 发表时间:
    2011-12
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Wu, Chuanfeng;Dunbar, Cynthia E
  • 通讯作者:
    Dunbar, Cynthia E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CYNTHIA E DUNBAR其他文献

CYNTHIA E DUNBAR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CYNTHIA E DUNBAR', 18)}}的其他基金

GENE TRANSFER AND EX VIVO MANIPULATION OF HEMATOPOIETIC CELLS
造血细胞的基因转移和离体操作
  • 批准号:
    6290425
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Gene Transfer And Ex Vivo Manipulation Of Hematopoietic
基因转移和造血的离体操作
  • 批准号:
    6809652
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Eltrombopag for bone marrow failure
艾曲波帕治疗骨髓衰竭
  • 批准号:
    8939922
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Clonal analysis of in vivo hematopoiesis
体内造血克隆分析
  • 批准号:
    8939842
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
The rhesus macaque as a preclinical model for induced pluripotent stem cells
恒河猴作为诱导多能干细胞的临床前模型
  • 批准号:
    8344862
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Eltrombopag for bone marrow failure
艾曲波帕治疗骨髓衰竭
  • 批准号:
    10253883
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Clonal and imaging analyses of in vivo hematopoiesis, immune cell ontogeny and adoptive cell therapies
体内造血、免疫细胞个体发育和过继细胞疗法的克隆和成像分析
  • 批准号:
    10929124
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Novel therapies for bone marrow failure and Diamond-Blackfan Anemia
骨髓衰竭和戴蒙德-布莱克范贫血的新疗法
  • 批准号:
    10929163
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Gene Transfer And Ex Vivo Manipulation Of Hematopoietic
基因转移和造血的离体操作
  • 批准号:
    6690539
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:
Developing Efficient and Safe Gene Transfer to Primate Hematopoietic Stem Cells
开发高效、安全的灵长类造血干细胞基因转移方法
  • 批准号:
    8557916
  • 财政年份:
  • 资助金额:
    $ 182.94万
  • 项目类别:

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 182.94万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 182.94万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 182.94万
  • 项目类别:
Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 182.94万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 182.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了