Optimization of genetic modification of HSCs in the NHP model and creation of relevant preclinical models of human disease and therapies
NHP模型中HSC基因修饰的优化以及人类疾病和治疗相关临床前模型的创建
基本信息
- 批准号:10929089
- 负责人:
- 金额:$ 182.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AgingAlzheimer&aposs disease riskAmyloidAnimal ModelAnimalsBar CodesBiologyBloodBlood CellsBlood PlateletsBrainCD34 geneCOVID-19COVID-19 severityCRISPR/Cas technologyCell CountCellsClinicClinicalClonal ExpansionClustered Regularly Interspaced Short Palindromic RepeatsControl AnimalDNA Double Strand BreakDiseaseDisease modelEngineeringEngraftmentFailureGenerationsGenesGeneticGenetic DiseasesHematopoiesisHematopoietic stem cellsHumanInflammatoryInheritedKnock-outLaboratoriesLentivirus VectorLinkLungMacacaMacaca mulattaMarrowMediatingMicrogliaModelingModificationMutateMutationMyeloid CellsNonhomologous DNA End JoiningNormal CellOther GeneticsOutcomePhenotypePilot ProjectsPre-Clinical ModelPredispositionPrognosisRUNX1 geneReportingResearchRhesusRodent ModelSARS-CoV-2 infectionSafetySyndromeSystemTimeTissuesToxic effectVirusWorkagedbase editingcardiovascular disorder riskcohortfunctional lossgene correctiongene therapygenome editinggenotoxicityhuman diseasehuman modelimprovedinsertion/deletion mutationlentiviral integrationleukemialoss of functionloss of function mutationmouse modelmutantpatient prognosispredictive testpreventrepairedsevere COVID-19targeted sequencingtargeted treatmenttau Proteinstherapeutic genome editing
项目摘要
My research group has worked for over 32 years in the laboratory and in the clinic to develop safe and effective gene therapies directed at hematopoietic stem and progenitor cells (HSPC). In the rhesus macaque model, shown to be the only predictive assay for human clinical results, we have focused on optimizing both lentiviral gene addition and gene editing therapies targeting hematopoietic stem and progenitor cells, and on understanding and enhancing the safety of established and new gene therapy systems.
Given the potential for genotoxicity with random integration of lentiviral vectors, and other drawbacks of semi-random gene addition as compared to targeted gene correction approaches, we have utilized the rhesus macaque to explore CRISPR/Cas9 genome editing and more recently base editing to create disease models and to develop gene editing therapies targeting HSPC. We have optimized CRISPR/Cas9 gene editing and base editing of rhesus CD34+ HSPC, initially knocking out loci via CRISPR/CAs-induced non-homologous end joining repair, creating loss-of function indels, and now focusing on improving the safety and efficacy of HDR-mediated gene correction and of single mutation-directed base editing. We have successfully engrafted 22 animals with gene-edited cells, with long-term levels of up to 70-90% for blood cells with targeted NHEJ indels.
We have focused on investigating the quantitative adverse impact of gene editing on the engraftment and long-term function of HSPCs in the macaque model. Using quantitative barcoding together with gene editing, we have demonstrated marked loss of functional HSPC numbers with both NHEJ but even more markedly HDR editing, and thus far less adverse impact on HSPCs with base editing, which does not result in double stranded DNA breaks.
We have created a robust macaque model of clonal hematopoiesis by targeting DNMT3, TET2 and ASXL1 with CRISPR/Cas9 mediated editing to create loss of function mutations. We have shown marked clonal expansion of TET2 mutated clones in three animals, and less marked expansion of DNMT2 or ASXL1 edited clones, and we have documented a highly inflammatory phenotype for TET2 mutant myeloid cells, relevant to the increased risk of cardiovascular disease in CHIP patients. We have multiple ongoing studies to investigate the biology of clonal expansion in these animals, and have shown that treatment with tociluzumab reverses or slows clonal expansion due to TET2 deficiency in this model (Shin et al, Blood, 2022). We hypothesized that clonal hematopoiesis accompanied by an inflammatory phenotype could be associated with severe COVID-19 disease, and carried out pilot studies investigating this using our macaque clonal hematopoiesis model, comparing outcomes of SARS-CoV-2 infection in clonal hematopoiesis versus control animals, documenting higher levels of virus in tissue and shed in the lungs (Shin et al, 2023).
We have also carried out a large scale targeted sequencing study of rhesus macaque blood cells from cohorts of aged animals, use deep error-corrected sequencing to look at 56 clonal hematopoiesis genes initially identified in aging humans. We have uncovered for the first time a natural animal model of clonal hematopoiesis, showing exactly the same genes mutated as in humans, in contrast to lack of such mutations in rodent models (Shin et al, Blood, 2022). We extended these studies to human cohorts in terms of analyzing the relationship between COVID-19 severity and the presence of clonal hematopoiesis, and in the largest and most definitive study to date, did not demonstrate an impact on COVID-19 severity (Zhou et al, Blood, 2022).
We have also developed a gene editing macaque model for RUNX1 deficiency in order to better understand the biology of the inherited marrow failure/leukemia predisposition syndrome and to assess the feasibility of gene therapies in correcting the phenotype, asking whether mutant vs normal cells predominate over time in a chimeric state. Mutant cells predominate, a concerning finding for gene therapies of this condition (Lee et al, Blood, 2023). This model also recapitulates the platelet and HSPC phenotype of human RUNX1 deficiency, in contrast to murine models.
A recent report linked clonal hematopoiesis to surprisingly a decreased risk of Alzheimer's disease, and postulated that CH myeloid cells were more potent in entering or functioning in the brain to prevent accumulation of amyloid or tau plaques. We have utilized our macaque CH model and control barcoded non-CH animals to investigate TET2 or other CH mutations results in higher replacement of microglial cells in the brain by analyzing purified macaque microglial cells for CH mutations compared to levels in blood myeloid cells. We have not found enhancement of microglial replacement by HSPC-derived cells in the setting of CH. Mechanistic studies are ongoing.
我的研究小组在实验室和临床工作了超过 32 年,致力于开发针对造血干细胞和祖细胞 (HSPC) 的安全有效的基因疗法。恒河猴模型被证明是人类临床结果的唯一预测分析,我们重点优化针对造血干细胞和祖细胞的慢病毒基因添加和基因编辑疗法,并了解和增强已建立基因和新基因的安全性治疗系统。
考虑到慢病毒载体随机整合可能产生基因毒性,以及与靶向基因校正方法相比半随机基因添加的其他缺点,我们利用恒河猴探索 CRISPR/Cas9 基因组编辑和最近的碱基编辑来创造疾病模型并开发针对 HSPC 的基因编辑疗法。我们优化了恒河猴 CD34+ HSPC 的 CRISPR/Cas9 基因编辑和碱基编辑,最初通过 CRISPR/CA 诱导的非同源末端连接修复敲除位点,产生功能缺失插入缺失,现在专注于提高治疗的安全性和有效性。 HDR 介导的基因校正和单突变定向碱基编辑。 我们已成功将基因编辑细胞移植到 22 只动物中,具有靶向 NHEJ 插入/缺失的血细胞的长期水平高达 70-90%。
我们重点研究基因编辑对猕猴模型中 HSPC 的植入和长期功能的定量不利影响。将定量条形码与基因编辑结合使用,我们证明了 NHEJ 功能性 HSPC 数量的显着损失,但 HDR 编辑的情况更为明显,因此碱基编辑对 HSPC 的不利影响要小得多,不会导致双链 DNA 断裂。
我们通过 CRISPR/Cas9 介导的编辑以 DNMT3、TET2 和 ASXL1 为目标,创建功能丧失突变,从而创建了强大的猕猴克隆造血模型。我们已经在三只动物中展示了 TET2 突变克隆的显着克隆扩增,以及 DNMT2 或 ASXL1 编辑克隆的不显着扩增,并且我们已经记录了 TET2 突变骨髓细胞的高度炎症表型,这与 CHIP 患者心血管疾病风险增加有关。 我们正在进行多项研究来调查这些动物中克隆扩增的生物学特性,并表明托珠单抗治疗可逆转或减缓该模型中由于 TET2 缺陷而导致的克隆扩增(Shin 等人,Blood,2022)。我们假设伴随炎症表型的克隆造血可能与严重的 COVID-19 疾病有关,并使用我们的猕猴克隆造血模型进行了初步研究,比较了克隆造血与对照动物中 SARS-CoV-2 感染的结果,记录了组织和肺部排出的病毒水平较高(Shin 等人,2023)。
我们还对老年动物群中的恒河猴血细胞进行了大规模靶向测序研究,使用深度纠错测序来研究最初在老年人中发现的 56 个克隆造血基因。 我们首次发现了克隆造血的自然动物模型,显示出与人类完全相同的基因突变,而啮齿动物模型中则缺乏此类突变(Shin 等人,Blood,2022)。我们将这些研究扩展到人类队列,分析了 COVID-19 严重程度与克隆造血存在之间的关系,并且在迄今为止规模最大、最明确的研究中,并未证明对 COVID-19 严重程度的影响(Zhou 等人) ,血,2022)。
我们还开发了一种针对 RUNX1 缺陷的基因编辑猕猴模型,以便更好地了解遗传性骨髓衰竭/白血病易感综合症的生物学,并评估基因疗法纠正表型的可行性,询问随着时间的推移突变细胞与正常细胞是否占主导地位处于嵌合状态。突变细胞占主导地位,这是这种情况的基因疗法的一个令人担忧的发现(Lee 等人,Blood,2023)。与小鼠模型相比,该模型还重现了人类 RUNX1 缺陷的血小板和 HSPC 表型。
最近的一份报告将克隆造血与阿尔茨海默氏病风险降低联系起来,并推测 CH 骨髓细胞更有效地进入大脑或在大脑中发挥作用,以防止淀粉样蛋白或 tau 斑块的积累。我们利用我们的猕猴 CH 模型和对照条形码非 CH 动物来研究 TET2 或其他 CH 突变导致大脑中小胶质细胞的更高替换,通过分析纯化的猕猴小胶质细胞的 CH 突变与血液骨髓细胞中的水平相比。我们尚未发现 CH 环境中 HSPC 衍生细胞对小胶质细胞替代的增强作用。 机理研究正在进行中。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two Decades of ASGCT: Dreams Become Reality.
ASGCT 的两个十年:梦想变成现实。
- DOI:10.1016/j.ymthe.2017.04.011
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Dunbar,CynthiaE
- 通讯作者:Dunbar,CynthiaE
A plethora of gene therapies for hemoglobinopathies.
大量针对血红蛋白病的基因疗法。
- DOI:10.1038/s41591-021-01235-7
- 发表时间:2021
- 期刊:
- 影响因子:82.9
- 作者:Dunbar,CynthiaE
- 通讯作者:Dunbar,CynthiaE
Thrombopoietic status of patients on haemodialysis.
血液透析患者的血小板生成状态。
- DOI:10.1111/bjh.13918
- 发表时间:2016
- 期刊:
- 影响因子:6.5
- 作者:Bat,Taha;Bat,BetulE;El-Moghraby,Ahmed;Patel,Samir;Feng,Xingmin;Dunbar,CynthiaE;Sarac,Erdal
- 通讯作者:Sarac,Erdal
No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells.
- DOI:10.1002/stem.322
- 发表时间:2010-04
- 期刊:
- 影响因子:5.2
- 作者:Winkler, Thomas;Cantilena, Amy;Metais, Jean-Yves;Xu, Xiuli;Nguyen, Anh-Dao;Borate, Bhavesh;Antosiewicz-Bourget, Jessica E.;Wolfsberg, Tyra G.;Thomson, James A.;Dunbar, Cynthia E.
- 通讯作者:Dunbar, Cynthia E.
Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity.
- DOI:10.1007/s11684-011-0159-1
- 发表时间:2011-12
- 期刊:
- 影响因子:8.1
- 作者:Wu, Chuanfeng;Dunbar, Cynthia E
- 通讯作者:Dunbar, Cynthia E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYNTHIA E DUNBAR其他文献
CYNTHIA E DUNBAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYNTHIA E DUNBAR', 18)}}的其他基金
GENE TRANSFER AND EX VIVO MANIPULATION OF HEMATOPOIETIC CELLS
造血细胞的基因转移和离体操作
- 批准号:
6290425 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
Gene Transfer And Ex Vivo Manipulation Of Hematopoietic
基因转移和造血的离体操作
- 批准号:
6809652 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
The rhesus macaque as a preclinical model for induced pluripotent stem cells
恒河猴作为诱导多能干细胞的临床前模型
- 批准号:
8344862 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
Clonal and imaging analyses of in vivo hematopoiesis, immune cell ontogeny and adoptive cell therapies
体内造血、免疫细胞个体发育和过继细胞疗法的克隆和成像分析
- 批准号:
10929124 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
Novel therapies for bone marrow failure and Diamond-Blackfan Anemia
骨髓衰竭和戴蒙德-布莱克范贫血的新疗法
- 批准号:
10929163 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
Gene Transfer And Ex Vivo Manipulation Of Hematopoietic
基因转移和造血的离体操作
- 批准号:
6690539 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
Enhancement of hematopoietic stem cell mobilization and engraftment
增强造血干细胞动员和植入
- 批准号:
8344863 - 财政年份:
- 资助金额:
$ 182.94万 - 项目类别:
相似国自然基金
阿尔茨海默病早期认知功能下降病情演化临界预警模型研究
- 批准号:82371484
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
- 批准号:82371419
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GFAP-C291棕榈酰化激活星型胶质细胞在阿尔茨海默病中的作用和机制及干预研究
- 批准号:32371309
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 182.94万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 182.94万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 182.94万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 182.94万 - 项目类别: