Neurophysiology Imaging Facility Core: Functional and Structural MRI

神经生理学成像设施核心:功能和结构 MRI

基本信息

项目摘要

Magnetic resonance imaging (MRI) technology continues to push forward, with the images gleaned from the human brain growing ever more impressive. Because blood flow is locally coupled to neural activity, it is possible to localize track the distribution of activity throughout human brain during cognitive tasks, something that was unthinkable one generation ago. The advances that have shaped MRI technology and impacted human medicine have come from basic science laboratories and preclinical research programs. The Neurophysiology Imaging Facility (NIF) is an NIH-wide core that makes structural and functional MRI imaging available and straightforward to a broad range of NIH basic science laboratories. A primary goal is to lower conceptual and practical barriers involved in the scanning itself so that researchers can pursue combinatorial methods for furthering their own research agendas. The NIF staff works with users to determine their needs and set upon optimal scanning protocols and methods. For investigators wanting to have scanning central to their research projects, the staff will also train scientists to gain autonomy in conducting their own experiments, including operation of the scanners. The NIF facility focuses particularly on functional MRI (fMRI), which allows researchers to visualize activity patterns within the brain of an awake subject. This approach to neuroscience often involves mapping the responses for one type of sensory stimulus relative to that for another. There are many analytic steps between the acquisition of raw MR signals and the scientific interpretation of the measured neural signals. This is particularly true for functional MRI (fMRI), where activity maps are generated based upon the evaluation of time varying intensity values throughout the brain from a series of MR volumes. Because most neuroscience researchers are not experts in the physics or engineering aspects of MRI, they rely heavily on experts in these domains to develop and maintain the best scanning environment possible. Thus, MRI is an inherently interdisciplinary enterprise, and experiments are typically done in the context of a dedicated core imaging facility. For many specialized studies, the challenges of MRI are compounded by technical issues, such as the production of specialized radiofrequency (RF) coils and the need to learn nonstandard procedures. Scanning is sometimes combined with other procedures such as pharmacological manipulation or simultaneous electrophysiological recording, often further complicating the imaging procedure. Overcoming these obstacles is of enormous value, since fMRI uniquely allows one to map activity over the entire brain and combine this method with other manipulations. In addition to two MRI scanners, the NIF facility also houses CT and PET/CT scanners, allowing for a spectrum of different scanning possibilities for researchers across NIH, ranging from routine anatomical scans to intricate, multimodal fMRI projects. These scanners play an increasingly important role for biomedical and disease research at the NIH, with interested parties now looking forward to the future to determine what the next addition to the core facility might be. Six staff members including Dr. Leopold, each from a different scientific background and with different skills, aim to provide the most efficient functional scanning services possible for a broad range of investigators. Many users of the NIF core focus only on structural scanning, for which the staff takes over most of the procedure and the scientist provides information about the target sites and basic scanning requirements. This approach is widely used to identify electrophysiological target sites and the position of indwelling microelectrodes, and to evaluate the experimental precision of a brain manipulation such as an injection. One particularly valuable use of structural imaging is the direct comparison of electrical recording sites with foci of fMRI responses in the context of a cognitive task. There are a range of contrast options, including diffusion weighted scans that can identify features in the white matter, or provide the basis for tractography. We have also recently purchased a computerized tomography (CT) machine to reside in the facility, and to serve as part of a pipeline to further improve surgical accuracy for a wide range of users. For functional scanning, scientists in individual laboratories carry out the testing, initially under guidance from the NIF staff. The fMRI studies go beyond mapping functional specialization in the brain. For example, experiments within the facility typically combine fMRI with other procedures, such as microelectrode recordings or pharmacological inactivation. The fMRI experiments produce large data files that must be processed to evaluate the functional activity patterns across the brain. The facility provides storage of these data, guidance in the initial processing steps, and server machines for full data analysis. The NIF staff spends a fraction of its time carrying out technical scientific research projects related to MRI and brain imaging. In the past several years, we have focused on completing studies related to diffusion tractography. We have been working in a highly collaborative effort with other groups inside and outside the NIH, we are continuing to study (1) the neuroanatomical basis of diffusion imaging, and (2) comparative fiber pathways across species. In addition, we completed studies on the role of the basal forebrain in resting state spontaneous fMRI signals, as well as collaborative work involved in atlases, templates, and data sharing. At present, research in the facility is focused on the design and testing of implanted radiofrequency coils, with the hope that this method can become routine for users seeking to obtain higher signal-to-noise images. Other research lines in the facility involve the development of scanning with newly available contrast agents.
磁共振成像(MRI)技术继续前进,其中从人脑收集的图像越来越令人印象深刻。由于血流与神经活动局部耦合,因此可以在认知任务期间定位在整个人脑中的活性分布,这是一代人前无法想象的。塑造MRI技术并影响人类医学的进步来自基础科学实验室和临床前研究计划。 神经生理成像设施(NIF)是NIH范围内的核心,它使结构性和功能性MRI成像可用,直接到广泛的NIH基础科学实验室。一个主要目标是降低扫描本身中涉及的概念和实用障碍,以便研究人员可以采用组合方法来促进自己的研究议程。 NIF员工与用户合作,以​​确定他们的需求并设置最佳扫描协议和方法。对于希望扫描其研究项目中心的调查人员,工作人员还将培训科学家在进行自己的实验(包括扫描仪的操作)方面获得自主权。 NIF设施特别关注功能性MRI(fMRI),该功能MRI(fMRI)使研究人员能够可视化清醒受试者大脑中的活动模式。这种神经科学方法通常涉及映射一种相对于另一种感觉刺激的响应。在获取原始MR信号与测量神经信号的科学解释之间有许多分析步骤。对于功能性MRI(fMRI)而言,这尤其如此,在该功能MRI(fMRI)中,根据一系列MR体积在整个大脑中的时间变化的时间变化,生成了活性图。 由于大多数神经科学研究人员不是MRI的物理或工程方面的专家,因此他们严重依赖这些领域的专家来开发和维护最佳的扫描环境。因此,MRI是一家固有的跨学科企业,通常在专用的核心成像设施的背景下进行实验。对于许多专业研究,MRI的挑战是技术问题的复杂性,例如生产专门的射频(RF)线圈以及学习非标准程序的需求。扫描有时与其他程序相结合,例如药理学操纵或同时进行电生理记录,通常会使成像过程变得更加复杂。克服这些障碍具有巨大的价值,因为fMRI唯一允许一个人在整个大脑上绘制活动,并将这种方法与其他操纵相结合。 除两次MRI扫描仪外,NIF设施还容纳CT和PET/CT扫描仪,还可以为NIH的研究人员提供各种不同的扫描可能性,从常规的解剖学扫描到复杂的多型FMRI项目。这些扫描仪在NIH的生物医学和疾病研究中起着越来越重要的作用,现在有兴趣的各方期待未来,以确定下一个核心设施的新增功能。 包括Leopold博士在内的六名员工,每个工作人员都来自不同的科学背景和不同的技能,旨在为广泛的研究人员提供最有效的功能扫描服务。 NIF核心的许多用户仅关注结构扫描,为此,员工接管了大多数程序,科学家提供了有关目标站点和基本扫描要求的信息。这种方法被广泛用于鉴定电生理目标位点和留置微电极的位置,并评估脑操纵(例如注射)的实验精度。结构成像的一种特别有价值的用途是在认知任务的背景下直接比较具有fMRI响应焦点的电记录位点。有多种对比选项,包括可以识别白质特征或为拖拉机提供基础的扩散加权扫描。我们最近还购买了计算机断层扫描(CT)机器来居住在该设施中,并作为管道的一部分,以进一步提高各种用户的手术准确性。 对于功能扫描,在NIF员工的指导下,各个实验室的科学家进行了测试。 fMRI研究超出了大脑中的功能专业化。例如,该设施内的实验通常将fMRI与其他程序(例如微电极记录或药理学失活)相结合。 fMRI实验产生的大型数据文件必须处理以评估整个大脑的功能活动模式。该设施提供了这些数据的存储,在初始处理步骤中的指导以及用于完整数据分析的服务器计算机。 NIF员工花了很少的时间进行与MRI和大脑成像有关的技术科学研究项目。在过去的几年中,我们专注于完成与扩散拖拉学有关的研究。我们一直在与NIH内外的其他组进行高度合作的努力,我们正在继续研究(1)扩散成像的神经解剖学基础,以及(2)跨物种的比较纤维途径。此外,我们完成了有关基础前脑在静止状态自发fMRI信号以及地图集,模板和数据共享中涉及的协作工作中的作用的研究。目前,该设施的研究重点介绍了植入的射频线圈的设计和测试,希望这种方法可以成为寻求获得更高信噪图像的用户的常规方法。该设施中的其他研究线涉及与新可用的对比剂的开发扫描。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
pyElectrode: an open-source tool using structural MRI for electrode positioning and neuron mapping.
  • DOI:
    10.1016/j.jneumeth.2012.12.012
  • 发表时间:
    2013-02-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Daye, Pierre M.;Monosov, Ilya E.;Hikosaka, Okihide;Leopold, David A.;Optican, Lance M.
  • 通讯作者:
    Optican, Lance M.
A digital 3D atlas of the marmoset brain based on multi-modal MRI.
  • DOI:
    10.1016/j.neuroimage.2017.12.004
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Liu C;Ye FQ;Yen CC;Newman JD;Glen D;Leopold DA;Silva AC
  • 通讯作者:
    Silva AC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David A Leopold其他文献

Diffusion kurtosis MRI tracks gray matter myelin content in the primate cerebral cortex
弥散峰度 MRI 追踪灵长类动物大脑皮层灰质髓磷脂含量
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Colin Reveley;Frank Q Ye;David A Leopold
  • 通讯作者:
    David A Leopold

David A Leopold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David A Leopold', 18)}}的其他基金

The Neural Basis of Functional MRI Responses
功能性 MRI 反应的神经基础
  • 批准号:
    8745740
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Neurophysiology of Visual Perception
视觉感知的神经生理学
  • 批准号:
    8745719
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
The Neural Basis of Functional MRI Responses
功能性 MRI 反应的神经基础
  • 批准号:
    9152122
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Neurophysiology of Visual Perception
视觉感知的神经生理学
  • 批准号:
    9568260
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Neurophysiology Imaging Facility Core: Functional and Structural MRI
神经生理学成像设施核心:功能和结构 MRI
  • 批准号:
    8342303
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Neurophysiology of Visual Perception
视觉感知的神经生理学
  • 批准号:
    8556949
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Neurophysiology of Visual Perception
视觉感知的神经生理学
  • 批准号:
    10012698
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Visual Adaptation and Neuronal Selectivity
视觉适应和神经元选择性
  • 批准号:
    8158147
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
The Neural Basis of Functional MRI Responses
功能性 MRI 反应的神经基础
  • 批准号:
    8158145
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:
Neurophysiology of Visual Perception
视觉感知的神经生理学
  • 批准号:
    8342147
  • 财政年份:
  • 资助金额:
    $ 215.87万
  • 项目类别:

相似国自然基金

城市区域专题地图集多元耦合信息设计模式
  • 批准号:
    41871374
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
集胞藻膜蛋白地图集的构建
  • 批准号:
    31670234
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
中国古代城市地图的收集、整理、研究和编纂
  • 批准号:
    49771008
  • 批准年份:
    1997
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目
应用系统科学进行地图集设计系统工程化、标准化研究
  • 批准号:
    49271061
  • 批准年份:
    1992
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目
<<中国古代地图集>>(清代)
  • 批准号:
    49171004
  • 批准年份:
    1991
  • 资助金额:
    5.0 万元
  • 项目类别:
    面上项目

相似海外基金

Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
  • 批准号:
    10739548
  • 财政年份:
    2023
  • 资助金额:
    $ 215.87万
  • 项目类别:
A novel platform to enhance single cell interrogation of nervous system development
增强神经系统发育单细胞询问的新平台
  • 批准号:
    10678917
  • 财政年份:
    2022
  • 资助金额:
    $ 215.87万
  • 项目类别:
Center for multidimensional atlas of the human heart
人类心脏多维图谱中心
  • 批准号:
    10661824
  • 财政年份:
    2022
  • 资助金额:
    $ 215.87万
  • 项目类别:
Organ Specific Project - Heart
器官特定项目 - 心脏
  • 批准号:
    10661828
  • 财政年份:
    2022
  • 资助金额:
    $ 215.87万
  • 项目类别:
Functionally guided adult whole brain cell atlas in human and NHP
人类和 NHP 的功能引导成人全脑细胞图谱
  • 批准号:
    10687245
  • 财政年份:
    2022
  • 资助金额:
    $ 215.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了