Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
基本信息
- 批准号:9531486
- 负责人:
- 金额:$ 40.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnkleAnteriorAreaBalance trainingBasic ScienceBehaviorBiomechanicsBrainBrain imagingCerebellumCerebral DominanceCognitionConsensusDataDiagnosisElectrodesElectroencephalographyEquilibriumExcisionFunctional Magnetic Resonance ImagingGaitGait speedGoalsHeadHumanImageImaging technologyLaboratoriesLeadLegLimb structureLiteratureLocomotionLocomotor adaptationMeasuresModelingMonitorMorphologic artifactsMotionMotorMotor CortexMovement DisordersNervous System TraumaNoisePaperParietal LobePeer ReviewPerformanceProcessPublishingResearch PersonnelRoboticsRunningSignal TransductionSomatosensory CortexSpeedSystemTechnologyTestingTrainingUnited States National Institutes of HealthUpper ExtremityVisualWalkingWorkbaseblood oxygen level dependentbrain computer interfacecingulate cortexdata warehousedensitydisabilityexoskeletonfoothuman subjectimaging modalityimprovedinnovationinsightlocomotor controllocomotor tasksmind controlnovelpublic health relevancerelating to nervous systemrobot exoskeletonsignal processingsomatosensorytemporal measurementtreadmillwalking speed
项目摘要
Title
Supraspinal Control of Human Locomotor Adaptation
Abstract
Advances in electroencephalography (EEG) technology have made it feasible to study electrical brain dynamics
during human gait. Active electrodes, novel signal processing approaches, and subject-specific inverse electrical
head models allow for unprecedented insight into how the human brain controls locomotion. Further advances
in EEG based mobile brain imaging will increase our fundamental understanding of how the human brain works
in real world situations, improve diagnosis and treatment of movement disorders, and result in new brain-
computer interfaces. We recently developed a novel noise-cancelling EEG system that can greatly improve the
signal to noise ratio for EEG. We propose to use our novel EEG system to investigate human locomotor
adaptation. Many studies have used blood-oxygen-level dependent imaging (e.g. fMRI or fNIRS) to study
supraspinal control of upper limb motor adaptation or imagined human walking, but the timescale of those
imaging modalities do not allow for identifying brain activity relative to the biomechanics of the gait cycle. We
propose to use our novel EEG system to document the brain areas involved in locomotor adaptation. Specifically,
we will quantify brain activity spectral fluctuations within the gait cycle that demonstrate correlations with
locomotor adaptation. We expect that multiple brain areas, including the anterior cingulate, cerebellum,
somatosensory cortex, and motor cortex are likely involved in the control and adaptation of walking. We also
expect that areas involved in locomotor adaptation will decrease spectral power fluctuations with improvements
in locomotor performance during challenging gait tasks. The specific tasks that we will investigate are walking at
different speeds, walking on a split-belt treadmill, walking with a unilateral robotic ankle exoskeleton, and walking
on a balance beam with visual perturbations. The high temporal resolution of EEG provides particularly valuable
insight into both amplitude and timing of brain activity within the gait cycle. Our preliminary data suggest that
there are more cortical areas involved in controlling human walking than are generally recognized in the literature.
The results from these studies will increase our basic science understanding of the supraspinal control of human
locomotor adaptation and should lead to further advances in EEG mobile brain imaging technology.
标题
人类运动适应的脊髓上控制
抽象的
脑电图 (EEG) 技术的进步使得研究脑电动力学成为可能
在人类步态过程中。有源电极、新颖的信号处理方法和特定主题的逆电学
头部模型可以让我们前所未有地深入了解人脑如何控制运动。进一步的进展
基于脑电图的移动大脑成像将增加我们对人脑如何工作的基本理解
在现实世界中,改善运动障碍的诊断和治疗,并产生新的大脑
计算机接口。我们最近开发了一种新型的降噪脑电图系统,可以大大改善
脑电图的信噪比。我们建议使用我们新颖的脑电图系统来研究人类运动
适应。许多研究使用血氧水平依赖性成像(例如 fMRI 或 fNIRS)来研究
上肢运动适应或想象的人类行走的脊髓上控制,但这些的时间尺度
成像方式无法识别与步态周期生物力学相关的大脑活动。我们
建议使用我们新颖的脑电图系统来记录参与运动适应的大脑区域。具体来说,
我们将量化步态周期内的大脑活动光谱波动,以证明与
运动适应。我们预计多个大脑区域,包括前扣带回、小脑、
体感皮层和运动皮层可能参与步行的控制和适应。我们也
预计涉及运动适应的区域将通过改进减少光谱功率波动
在具有挑战性的步态任务中的运动表现。我们要研究的具体任务是步行
不同速度、在分带式跑步机上行走、使用单侧机器人踝关节外骨骼行走以及行走
在具有视觉扰动的平衡木上。脑电图的高时间分辨率提供了特别有价值的
深入了解步态周期内大脑活动的幅度和时间。我们的初步数据表明
控制人类行走的皮质区域比文献中普遍认识的要多。
这些研究的结果将增加我们对人类脊髓上控制的基础科学理解
运动适应应该会导致脑电图移动脑成像技术的进一步进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel P Ferris其他文献
Daniel P Ferris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel P Ferris', 18)}}的其他基金
Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
- 批准号:
10377086 - 财政年份:2021
- 资助金额:
$ 40.62万 - 项目类别:
Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
- 批准号:
10426056 - 财政年份:2018
- 资助金额:
$ 40.62万 - 项目类别:
Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
- 批准号:
10667742 - 财政年份:2018
- 资助金额:
$ 40.62万 - 项目类别:
Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
- 批准号:
10671884 - 财政年份:2018
- 资助金额:
$ 40.62万 - 项目类别:
Electrical Neuroimaging of Brain Processes during Human Gait
人类步态期间大脑过程的电神经成像
- 批准号:
8322574 - 财政年份:2011
- 资助金额:
$ 40.62万 - 项目类别:
Electrical Neuroimaging of Brain Processes during Human Gait
人类步态期间大脑过程的电神经成像
- 批准号:
8322574 - 财政年份:2011
- 资助金额:
$ 40.62万 - 项目类别:
Electrical Neuroimaging of Brain Processes during Human Gait
人类步态期间大脑过程的电神经成像
- 批准号:
8727116 - 财政年份:2011
- 资助金额:
$ 40.62万 - 项目类别:
Electrical Neuroimaging of Brain Processes during Human Gait
人类步态期间大脑过程的电神经成像
- 批准号:
8532061 - 财政年份:2011
- 资助金额:
$ 40.62万 - 项目类别:
Electrical Neuroimaging of Brain Processes during Human Gait
人类步态期间大脑过程的电神经成像
- 批准号:
8236146 - 财政年份:2011
- 资助金额:
$ 40.62万 - 项目类别:
相似国自然基金
蚕丝和家蚕前部丝腺纺丝液的原位超微结构研究
- 批准号:32302816
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑室旁核前部TGR5在慢性应激诱导的焦虑样行为中的作用及机制
- 批准号:82373860
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
家蚕前部丝腺特异表皮蛋白在角质层内膜构建及蚕丝纤维化中的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
谷氨酸能系统调节的前部岛叶皮层神经振荡在针刺缓解慢性疼痛中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态影像学的视乳头区域微循环灌注评估及NAION发病机制研究
- 批准号:81800840
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
$ 40.62万 - 项目类别:
Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
- 批准号:
10377086 - 财政年份:2021
- 资助金额:
$ 40.62万 - 项目类别:
Fatigue and mobility in stroke: a Biomechanical and Neurophysiological Investigation
中风时的疲劳和活动能力:生物力学和神经生理学研究
- 批准号:
10631848 - 财政年份:2019
- 资助金额:
$ 40.62万 - 项目类别:
Fatigue and mobility in stroke: a Biomechanical and Neurophysiological Investigation
中风时的疲劳和活动能力:生物力学和神经生理学研究
- 批准号:
9982097 - 财政年份:2019
- 资助金额:
$ 40.62万 - 项目类别:
Supraspinal Control of Human Locomotor Adaptation
人类运动适应的脊髓上控制
- 批准号:
10426056 - 财政年份:2018
- 资助金额:
$ 40.62万 - 项目类别: