Glutamate Transport into Synaptic Vesicles
谷氨酸转运至突触小泡
基本信息
- 批准号:10568125
- 负责人:
- 金额:$ 49.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAllosteric RegulationBiochemicalBiological AssayCell membraneChemicalsCytoplasmDependenceEndocytosisEquilibriumEventExcisionExhibitsFaceFamily memberGlutamate TransporterGlutamatesIonsKnock-outLocationMediatingMembraneMembrane PotentialsMolecularMolecular ConformationMonitorNatureNeuronsNeurotransmittersOocytesPhysiologicalPhysiologyPropertyRecoveryRecyclingRegulationRoleSideSignal TransductionSynapsesSynaptic TransmissionSynaptic VesiclesSystemTestingTransmembrane TransportVesicleWorkextracellularinsightmutantneuralneurotransmissionneurotransmitter transportpH gradientpreventprogramssynaptic depressiontransmission processuptakevesicle transport
项目摘要
The quantal nature of synaptic transmission depends on the transport of neurotransmitter into synaptic
vesicles (SVs), an activity driven by a H+ electrochemical gradient (∆µH+). In contrast to relatively stable ionic
gradients across the plasma membrane, ∆µH+ and other ions including Cl- fluctuate with the exo- and endocytosis
of SVs. Vesicle filling requires coordination with these changing conditions and hence regulation of transport.
In contrast to the SV uptake of most transmitters that relies primarily on the chemical component of ∆µH+
(∆pH), uptake of the principal excitatory transmitter glutamate depends predominantly on membrane potential.
The vesicular glutamate transporters (VGLUTs) also exhibit unusual properties, including allosteric regulation by
lumenal H+, cytosolic and lumenal Cl- and an associated Cl- conductance. We hypothesize that these
mechanisms coordinate glutamate flux with different steps in the exo- and endocytic recycling of synaptic
vesicles. The long-term objective of this proposal is to understand how these properties of the VGLUTs contribute
to excitatory neurotransmission. The strategy is to determine how these mechanisms regulate VGLUT activity,
and use this information to characterize their physiological role. This program takes advantage of our previous
work identifying these regulatory mechanisms, assays we developed to study them, recent structural information
and VGLUT knockout neurons that we can use to test rescue by mutants.
Aim 1: Elucidate the mechanism and physiological role of pH in vesicular glutamate transport. The
requirement for allosteric activation of the VGLUTs by lumenal H+ suggests a mechanism to prevent tonic efflux
of glutamate across the plasma membrane that would degrade the quantal signal. We recently identified a single
residue that confers the pH requirement of vesicular glutamate transport. We will now use this information to
determine how pH regulates glutamate transport and how this regulation influences excitatory transmission.
Aim 2: Determine how Cl- allosterically regulates vesicular glutamate transport. We recently found that an
extensive cytoplasmic interaction network influences the allosteric regulation by lumenal pH on the other side of
the SV membrane, suggesting that the alternating access involved in glutamate transport depends on the
balance in strength between cytoplasmic and lumenal gates. We hypothesize that Cl- also affects the two gates,
either directly or indirectly. We will thus determine how the cytoplasmic interaction network and lumenal residues
contribute to allosteric regulation of glutamate flux by cytoplasmic and lumenal Cl-.
Aim 3: Aim 3: Determine how lumenal Cl- affects glutamate storage and release. Removal of extracellular
Cl- prevents recovery from the synaptic depression that normally follows strong stimulation. To determine
whether this reflects a requirement for the efflux of lumenal Cl- mediated by a VGLUT-associated conductance,
we will rescue VGLUT1/2 double knockouts with mutants lacking the conductance, and monitor the effects on
glutamate release and SV pH.
突触传播的量化性质取决于神经递质转运到突触
Vesict(SVS),与相对稳定的离子相比,由H+电化学梯度驱动的活动
整个质膜,ΔH+和其他离子离子离子在内
囊泡填充需要与变化的条件和运输调节的协调。
与大多数发射器的SV吸收相反,该发射器依赖于∆H+的化学成分
(∆PH),主要兴奋性发射机谷氨酸的吸收主要取决于膜电位。
囊泡谷氨酸透明膜(VGLUTS)也表现出异常特性,包括通过
Lumenal H+,胞质和Lumenal CL及相关CL导率。
机理协调谷氨酸通量与突触的外移和内环中的不同步骤
vesict。
兴奋性神经传递。
并使用此帐户来表征他们的生理角色。
识别规则性机制,我们开发的测定方法的工作,最新的结构信息
和VGLUT敲除神经元,我们可以使用突变体进行测试休息。
AIM 1:阐明囊泡谷氨酸转运的机制和生理角色
腔内H+对VGLUT的变构激活的要求表明,机械师Tonic Effflux
跨质膜的谷氨酸将降解量子信号。
赋予水泡谷氨酸运输的pH值的残留物。
确定pH定期如何定期谷氨酸转运以及如何进行调节会影响精力传播。
AIM 2:确定Cl-Asterpory如何调节囊泡谷氨酸的运输。
广泛的细胞质相互作用网络影响了腔pH的变构调节的另一侧。
SV膜,表明在谷氨酸运输部门涉及的交替访问
细胞质和腔内门之间的强度平衡。
因此,我们将直接或间接地确定细胞质相互作用网络
有助于细胞质和腔内Cl-对谷氨酸通量的变构调节。
AIM 3:AIM 3:确定Lumenal Cl-对谷氨酸的储存和释放
Cl-Prevents从通常遵循强劲强劲强的突触抑郁症中恢复。
这是否反映了由VGLUT相关电导率介导的流体CL介导的外排的要求,
我们将在缺乏电导的情况下挽救VGLUT1/2双敲击,并监视对
谷氨酸释放和SV pH。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT H EDWARDS其他文献
ROBERT H EDWARDS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT H EDWARDS', 18)}}的其他基金
Structural Basis of Vesicular Neurotransmitter Transport
囊泡神经递质运输的结构基础
- 批准号:
9258506 - 财政年份:2015
- 资助金额:
$ 49.3万 - 项目类别:
Structural Basis of Vesicular Neurotransmitter Transport
囊泡神经递质运输的结构基础
- 批准号:
9920217 - 财政年份:2015
- 资助金额:
$ 49.3万 - 项目类别:
Structural Basis of Vesicular Neurotransmitter Transport
囊泡神经递质运输的结构基础
- 批准号:
8964141 - 财政年份:2015
- 资助金额:
$ 49.3万 - 项目类别:
Structural Basis of Vesicular Neurotransmitter Transport
囊泡神经递质运输的结构基础
- 批准号:
10614384 - 财政年份:2015
- 资助金额:
$ 49.3万 - 项目类别:
Structural Basis of Vesicular Neurotransmitter Transport
囊泡神经递质运输的结构基础
- 批准号:
10392888 - 财政年份:2015
- 资助金额:
$ 49.3万 - 项目类别:
相似国自然基金
基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
- 批准号:22307113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
GABAB受体复合体变构调节的生理和病理研究
- 批准号:32330049
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
- 批准号:32371289
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于CaSR变构调节探讨大米蛋白肽-钙复合物改善肠上皮屏障功能的机制研究
- 批准号:32360576
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Regulation of erythroid iron metabolism by the CLPX unfoldase
CLPX 解折叠酶对红细胞铁代谢的调节
- 批准号:
10716494 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别:
Allosteric regulation of lysine degradation as a novel pathophysiological mechanism in glutaric aciduria type 1
赖氨酸降解的变构调节作为 1 型戊二酸尿症的一种新的病理生理机制
- 批准号:
10720740 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别:
Structural and Functional Analysis of Nucleocytoplasmic Protein O-Glycosyltransferases in Plants
植物核胞质蛋白 O-糖基转移酶的结构和功能分析
- 批准号:
10648930 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别:
Function and Targeting of ETV6 in Ewing Sarcoma
ETV6 在尤文肉瘤中的功能和靶向
- 批准号:
10740562 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别:
Elucidating the mechanism of cell type specific regulation of the Par complex
阐明 Par 复合物的细胞类型特异性调节机制
- 批准号:
10607140 - 财政年份:2023
- 资助金额:
$ 49.3万 - 项目类别: